Refactor description in app.py to improve readability
Browse files
app.py
CHANGED
@@ -251,29 +251,72 @@ iface = gr.Interface(
|
|
251 |
datatype=["number"] * len(example_result),
|
252 |
),
|
253 |
description="""
|
254 |
-
|
255 |
-
|
256 |
-
`y2`,
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
""",
|
278 |
)
|
279 |
iface.launch()
|
|
|
251 |
datatype=["number"] * len(example_result),
|
252 |
),
|
253 |
description="""
|
254 |
+
## Objectives
|
255 |
+
|
256 |
+
**Minimize `y1`, `y2`, `y3`, and `y4`**
|
257 |
+
|
258 |
+
### Correlations
|
259 |
+
|
260 |
+
- `y1` and `y2` are correlated
|
261 |
+
- `y1` is anticorrelated with `y3`
|
262 |
+
- `y2` is anticorrelated with `y3`
|
263 |
+
|
264 |
+
### Noise
|
265 |
+
|
266 |
+
`y1`, `y2`, and `y3` are stochastic with heteroskedastic, parameter-free
|
267 |
+
noise, whereas `y4` is deterministic, but still considered 'black-box'. In
|
268 |
+
other words, repeat calls with the same input arguments will result in
|
269 |
+
different values for `y1`, `y2`, and `y3`, but the same value for `y4`.
|
270 |
+
|
271 |
+
### Objective thresholds
|
272 |
+
|
273 |
+
If `y1` is greater than 0.2, the result is considered "bad" no matter how
|
274 |
+
good the other values are. If `y2` is greater than 0.7, the result is
|
275 |
+
considered "bad" no matter how good the other values are. If `y3` is greater
|
276 |
+
than 1800, the result is considered "bad" no matter how good the other
|
277 |
+
values are. If `y4` is greater than 40e6, the result is considered "bad" no
|
278 |
+
matter how good the other values are.
|
279 |
+
|
280 |
+
## Search Space
|
281 |
+
|
282 |
+
### Fidelity
|
283 |
+
|
284 |
+
`fidelity1` is a fidelity parameter. The lowest fidelity is 0, and the
|
285 |
+
highest fidelity is 1. The higher the fidelity, the more expensive the
|
286 |
+
evaluation, and the higher the quality.
|
287 |
+
|
288 |
+
NOTE: `fidelity1` and `y3` are correlated.
|
289 |
+
|
290 |
+
### Constraints
|
291 |
+
|
292 |
+
- x<sub>19</sub> < x<sub>20</sub>
|
293 |
+
- x<sub>6</sub> + x<sub>15</sub> β€ 1.0
|
294 |
+
|
295 |
+
### Parameter bounds
|
296 |
+
|
297 |
+
- 0 β€ x<sub>i</sub> β€ 1 for i β {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
|
298 |
+
14, 15, 16, 17, 18, 19, 20}
|
299 |
+
- c<sub>1</sub> β {c1_0, c1_1}
|
300 |
+
- c<sub>2</sub> β {c2_0, c2_1}
|
301 |
+
- c<sub>3</sub> β {c3_0, c3_1, c3_2}
|
302 |
+
- 0 β€ fidelity1 β€ 1
|
303 |
+
|
304 |
+
## Notion of best
|
305 |
+
|
306 |
+
Thresholded Pareto front hypervolume vs. running cost for three different
|
307 |
+
budgets, and averaged over 10 search campaigns.
|
308 |
+
|
309 |
+
References:
|
310 |
+
|
311 |
+
(1) Baird, S. G.; Liu, M.; Sparks, T. D. High-Dimensional Bayesian
|
312 |
+
Optimization of 23 Hyperparameters over 100 Iterations for an
|
313 |
+
Attention-Based Network to Predict Materials Property: A Case Study on
|
314 |
+
CrabNet Using Ax Platform and SAASBO. Computational Materials Science
|
315 |
+
2022, 211, 111505. https://doi.org/10.1016/j.commatsci.2022.111505.
|
316 |
+
(2) Baird, S. G.; Parikh, J. N.; Sparks, T. D. Materials Science
|
317 |
+
Optimization Benchmark Dataset for High-Dimensional, Multi-Objective,
|
318 |
+
Multi-Fidelity Optimization of CrabNet Hyperparameters. ChemRxiv March
|
319 |
+
7, 2023. https://doi.org/10.26434/chemrxiv-2023-9s6r7.
|
320 |
""",
|
321 |
)
|
322 |
iface.launch()
|