Refactor evaluate function in app.py to include parameter scaling and unscaled evaluation
Browse files- train_surrogate.py +320 -3
train_surrogate.py
CHANGED
@@ -1,3 +1,320 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import joblib
|
3 |
+
from os import path
|
4 |
+
from pathlib import Path
|
5 |
+
import pandas as pd
|
6 |
+
import numpy as np
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
|
9 |
+
# from joblib import Parallel, delayed
|
10 |
+
|
11 |
+
from sklearn.ensemble import HistGradientBoostingRegressor, RandomForestRegressor
|
12 |
+
from sklearn.metrics import mean_squared_error
|
13 |
+
from sklearn.model_selection import RandomizedSearchCV
|
14 |
+
from sklearn.model_selection import KFold
|
15 |
+
|
16 |
+
from scipy.stats import uniform, randint
|
17 |
+
|
18 |
+
model_type = "hgbr" # "hgbr" or "rfr"
|
19 |
+
optimize_hyperparameters = True
|
20 |
+
dummy = False
|
21 |
+
n_jobs = -1 # Number of jobs to run in parallel. -1 means using all processors.
|
22 |
+
|
23 |
+
data_dir = "."
|
24 |
+
model_dir = "models"
|
25 |
+
|
26 |
+
assert model_type in [
|
27 |
+
"hgbr",
|
28 |
+
"rfr",
|
29 |
+
], f"Invalid model type: {model_type}, must be 'hgbr' or 'rfr'"
|
30 |
+
|
31 |
+
if dummy:
|
32 |
+
model_dir = path.join(model_dir, "dummy")
|
33 |
+
|
34 |
+
Path(model_dir).mkdir(exist_ok=True, parents=True)
|
35 |
+
|
36 |
+
sobol_reg = pd.read_csv(path.join(data_dir, "sobol_regression.csv"))
|
37 |
+
|
38 |
+
if dummy:
|
39 |
+
data_dir = path.join(data_dir, "dummy")
|
40 |
+
sobol_reg = sobol_reg.head(100)
|
41 |
+
|
42 |
+
Path(data_dir).mkdir(exist_ok=True, parents=True)
|
43 |
+
|
44 |
+
elemprop_ohe = pd.get_dummies(sobol_reg["elem_prop"], prefix="elem_prop")
|
45 |
+
hardware_ohe = pd.get_dummies(sobol_reg["hardware"], prefix="hardware")
|
46 |
+
|
47 |
+
sobol_reg["use_RobustL1"] = sobol_reg["criterion"] == "RobustL1"
|
48 |
+
|
49 |
+
sobol_reg["bias"] = sobol_reg["bias"].astype(int)
|
50 |
+
|
51 |
+
sobol_reg = pd.concat([sobol_reg, elemprop_ohe], axis=1)
|
52 |
+
|
53 |
+
common_features = [
|
54 |
+
"N",
|
55 |
+
"alpha",
|
56 |
+
"d_model",
|
57 |
+
"dim_feedforward",
|
58 |
+
"dropout",
|
59 |
+
"emb_scaler",
|
60 |
+
"eps",
|
61 |
+
"epochs_step",
|
62 |
+
"fudge",
|
63 |
+
"heads",
|
64 |
+
"k",
|
65 |
+
"lr",
|
66 |
+
"pe_resolution",
|
67 |
+
"ple_resolution",
|
68 |
+
"pos_scaler",
|
69 |
+
"weight_decay",
|
70 |
+
"batch_size",
|
71 |
+
"out_hidden4",
|
72 |
+
"betas1",
|
73 |
+
"betas2",
|
74 |
+
"train_frac",
|
75 |
+
"bias",
|
76 |
+
"use_RobustL1",
|
77 |
+
"elem_prop_magpie",
|
78 |
+
"elem_prop_mat2vec",
|
79 |
+
"elem_prop_onehot",
|
80 |
+
]
|
81 |
+
|
82 |
+
|
83 |
+
mae_features = common_features + ["mae_rank"]
|
84 |
+
X_array_mae = sobol_reg[mae_features]
|
85 |
+
y_array_mae = sobol_reg[["mae"]]
|
86 |
+
mae_model_stem = path.join(model_dir, "sobol_reg_mae")
|
87 |
+
|
88 |
+
rmse_features = common_features + ["rmse_rank"]
|
89 |
+
X_array_rmse = sobol_reg[rmse_features]
|
90 |
+
y_array_rmse = sobol_reg[["rmse"]]
|
91 |
+
rmse_model_stem = path.join(model_dir, "sobol_reg_rmse")
|
92 |
+
|
93 |
+
# no model_size_rank because model_size is deterministic via
|
94 |
+
# `crabnet.utils.utils.count_parameters`
|
95 |
+
model_size_features = common_features
|
96 |
+
X_array_model_size = sobol_reg[model_size_features]
|
97 |
+
y_array_model_size = sobol_reg[["model_size"]]
|
98 |
+
model_size_model_stem = path.join(model_dir, "sobol_reg_model_size")
|
99 |
+
|
100 |
+
runtime_features = common_features + ["runtime_rank"]
|
101 |
+
X_array_runtime = sobol_reg[runtime_features]
|
102 |
+
y_array_runtime = sobol_reg[["runtime"]]
|
103 |
+
runtime_model_stem = path.join(model_dir, "sobol_reg_runtime")
|
104 |
+
|
105 |
+
|
106 |
+
def train_and_save(
|
107 |
+
sr_feat_array,
|
108 |
+
sr_labels_array,
|
109 |
+
sr_label_names,
|
110 |
+
optimize_hyperparameters=False,
|
111 |
+
):
|
112 |
+
models = {}
|
113 |
+
timings = {}
|
114 |
+
# cv_scores = []
|
115 |
+
avg_cv_scores = {}
|
116 |
+
cv_predictions = {}
|
117 |
+
|
118 |
+
for X1, y1, name1 in zip(sr_feat_array, sr_labels_array, sr_label_names):
|
119 |
+
y1 = y1.squeeze()
|
120 |
+
print(f"X1 sr shape: {X1.shape}, Y1 sr shape: {y1.shape}")
|
121 |
+
|
122 |
+
if model_type == "rfr":
|
123 |
+
model = RandomForestRegressor(random_state=13)
|
124 |
+
elif model_type == "hgbr":
|
125 |
+
model = HistGradientBoostingRegressor(random_state=13)
|
126 |
+
|
127 |
+
if optimize_hyperparameters:
|
128 |
+
# define hyperparameters to tune
|
129 |
+
if model.__class__.__name__ == "HistGradientBoostingRegressor":
|
130 |
+
param_dist = {
|
131 |
+
"max_iter": randint(100, 200),
|
132 |
+
"max_leaf_nodes": [None, 30, 50],
|
133 |
+
"learning_rate": uniform(0.01, 0.1),
|
134 |
+
# Add more hyperparameters here as needed
|
135 |
+
}
|
136 |
+
elif model.__class__.__name__ == "RandomForestRegressor":
|
137 |
+
param_dist = {
|
138 |
+
"n_estimators": randint(100, 200),
|
139 |
+
"max_features": ["auto", "sqrt"],
|
140 |
+
"max_depth": randint(10, 50),
|
141 |
+
"min_samples_split": randint(2, 10),
|
142 |
+
# Add more hyperparameters here as needed
|
143 |
+
}
|
144 |
+
|
145 |
+
# Use RandomizedSearchCV to tune the hyperparameters
|
146 |
+
random_search = RandomizedSearchCV(
|
147 |
+
model,
|
148 |
+
param_dist,
|
149 |
+
n_iter=10,
|
150 |
+
cv=5,
|
151 |
+
scoring="neg_mean_squared_error",
|
152 |
+
random_state=13,
|
153 |
+
n_jobs=n_jobs,
|
154 |
+
)
|
155 |
+
|
156 |
+
start_time = time.time()
|
157 |
+
# REVIEW: use y1.values.ravel() instead of y1 to flatten y1 to a 1D array
|
158 |
+
random_search.fit(X1, y1)
|
159 |
+
end_time = time.time()
|
160 |
+
|
161 |
+
# Use the best estimator found by RandomizedSearchCV
|
162 |
+
model = random_search.best_estimator_
|
163 |
+
timings[name1] = end_time - start_time
|
164 |
+
else:
|
165 |
+
start_time = time.time()
|
166 |
+
model.fit(X1, y1)
|
167 |
+
end_time = time.time()
|
168 |
+
timings[name1] = end_time - start_time
|
169 |
+
|
170 |
+
print(f"Trained {name1} in {timings[name1]} seconds")
|
171 |
+
|
172 |
+
# Perform cross-validation manually to keep track of predictions
|
173 |
+
# NOTE: This doesn't use GroupKFold, which would prevent cross-leakage for the rank column
|
174 |
+
# cv = KFold(n_splits=5)
|
175 |
+
# cv_preds = []
|
176 |
+
# for train_index, test_index in cv.split(X1):
|
177 |
+
# X_train, X_test = X1.iloc[train_index], X1.iloc[test_index]
|
178 |
+
# y_train, y_test = y1.iloc[train_index], y1.iloc[test_index]
|
179 |
+
# model.fit(X_train, y_train)
|
180 |
+
# preds = model.predict(X_test)
|
181 |
+
# cv_preds.extend(preds)
|
182 |
+
# cv_scores.append(mean_squared_error(y_test, preds))
|
183 |
+
# avg_cv_scores[name1] = np.sqrt(np.mean(cv_scores))
|
184 |
+
# cv_predictions[name1] = cv_preds
|
185 |
+
|
186 |
+
def cross_validate(X1, y1, model):
|
187 |
+
cv = KFold(n_splits=5)
|
188 |
+
cv_preds = []
|
189 |
+
cv_scores = []
|
190 |
+
for train_index, test_index in cv.split(X1):
|
191 |
+
X_train, X_test = X1.iloc[train_index], X1.iloc[test_index]
|
192 |
+
y_train, y_test = y1.iloc[train_index], y1.iloc[test_index]
|
193 |
+
model.fit(X_train, y_train)
|
194 |
+
preds = model.predict(X_test)
|
195 |
+
cv_preds.extend(preds)
|
196 |
+
cv_scores.append(mean_squared_error(y_test, preds))
|
197 |
+
return cv_preds, np.sqrt(np.mean(cv_scores))
|
198 |
+
|
199 |
+
cv_predictions[name1], avg_cv_scores[name1] = cross_validate(X1, y1, model)
|
200 |
+
|
201 |
+
# # Parallelize the outer loop
|
202 |
+
# results = Parallel(n_jobs=n_jobs)(
|
203 |
+
# delayed(cross_validate)(X1, y1, model)
|
204 |
+
# for X1, y1 in zip(sr_feat_array, sr_labels_array)
|
205 |
+
# )
|
206 |
+
|
207 |
+
# # Unpack the results
|
208 |
+
# cv_predictions, avg_cv_scores = zip(*results)
|
209 |
+
|
210 |
+
# # Convert the results to dictionaries
|
211 |
+
# cv_predictions = dict(zip(sobol_reg_target_names, cv_predictions))
|
212 |
+
# avg_cv_scores = dict(zip(sobol_reg_target_names, avg_cv_scores))
|
213 |
+
|
214 |
+
print(f"Cross-validated score for {name1}: {avg_cv_scores[name1]}")
|
215 |
+
|
216 |
+
models[name1] = model
|
217 |
+
|
218 |
+
print()
|
219 |
+
|
220 |
+
return models, timings, avg_cv_scores, cv_predictions
|
221 |
+
|
222 |
+
|
223 |
+
# List of x_arrays, y_arrays, and target_names
|
224 |
+
sobol_reg_x_arrays = [X_array_mae, X_array_rmse, X_array_model_size, X_array_runtime]
|
225 |
+
sobol_reg_labels = [y_array_mae, y_array_rmse, y_array_model_size, y_array_runtime]
|
226 |
+
sobol_reg_target_names = ["mae", "rmse", "model_size", "runtime"]
|
227 |
+
|
228 |
+
# Train and save the model on all the data
|
229 |
+
models, timings, avg_cv_scores, cv_predictions = train_and_save(
|
230 |
+
sobol_reg_x_arrays,
|
231 |
+
sobol_reg_labels,
|
232 |
+
sobol_reg_target_names,
|
233 |
+
optimize_hyperparameters=optimize_hyperparameters, # if true, probably ~16 min for iter=5 & cv=3
|
234 |
+
)
|
235 |
+
|
236 |
+
print(f"Timings (in seconds): {timings}") # doesn't include cross_val_score runtime
|
237 |
+
print(f"Cross-validated scores: {avg_cv_scores}")
|
238 |
+
|
239 |
+
# Save timings and cv_scores to a CSV file
|
240 |
+
results = pd.DataFrame(
|
241 |
+
{
|
242 |
+
"Model": list(timings.keys()),
|
243 |
+
"Timing": list(timings.values()),
|
244 |
+
"CV Score": list(avg_cv_scores.values()),
|
245 |
+
}
|
246 |
+
)
|
247 |
+
|
248 |
+
# Determine the model type and optimization status
|
249 |
+
model_type = (
|
250 |
+
"hgbr"
|
251 |
+
if isinstance(next(iter(models.values())), HistGradientBoostingRegressor)
|
252 |
+
else "rfr"
|
253 |
+
)
|
254 |
+
opt_status = "opt" if optimize_hyperparameters else "no_opt"
|
255 |
+
|
256 |
+
# Save the results and models with the updated filenames
|
257 |
+
results_filename = f"model_results_{model_type}_{opt_status}.csv"
|
258 |
+
models_filename = f"surrogate_models_{model_type}_{opt_status}.pkl"
|
259 |
+
|
260 |
+
results.to_csv(path.join(model_dir, results_filename), index=False)
|
261 |
+
joblib.dump(models, path.join(model_dir, models_filename), compress=7)
|
262 |
+
|
263 |
+
# NOTE: Can use this if looking at how well it memorizes the training data
|
264 |
+
# # Generate predictions for each model
|
265 |
+
# predictions = {
|
266 |
+
# name: model.predict(X)
|
267 |
+
# for name, model, X in zip(
|
268 |
+
# sobol_reg_target_names, models.values(), sobol_reg_x_arrays
|
269 |
+
# )
|
270 |
+
# }
|
271 |
+
|
272 |
+
# Create a 2x2 grid of subplots
|
273 |
+
fig, axs = plt.subplots(2, 2, figsize=(8, 8))
|
274 |
+
|
275 |
+
# Flatten the axs array for easy iteration
|
276 |
+
axs = axs.flatten()
|
277 |
+
|
278 |
+
for ax, name in zip(axs, sobol_reg_target_names):
|
279 |
+
# Get the true and predicted values for this model
|
280 |
+
true_values = sobol_reg[name]
|
281 |
+
predicted_values = cv_predictions[name]
|
282 |
+
|
283 |
+
# Create the hexbin plot with log scaling
|
284 |
+
hb = ax.hexbin(
|
285 |
+
true_values, predicted_values, gridsize=50, cmap="viridis", bins="log"
|
286 |
+
)
|
287 |
+
cb = plt.colorbar(hb, ax=ax)
|
288 |
+
cb.set_label("counts (log scale)")
|
289 |
+
|
290 |
+
ax.plot(
|
291 |
+
[true_values.min(), true_values.max()],
|
292 |
+
[true_values.min(), true_values.max()],
|
293 |
+
"w--",
|
294 |
+
)
|
295 |
+
ax.set_xlabel("True Values")
|
296 |
+
ax.set_ylabel("Predicted Values")
|
297 |
+
ax.set_title(f"Parity Plot for {name}")
|
298 |
+
|
299 |
+
# Set the aspect ratio to be equal
|
300 |
+
ax.set_aspect("equal")
|
301 |
+
|
302 |
+
# Adjust the layout and show the plot
|
303 |
+
plt.tight_layout()
|
304 |
+
|
305 |
+
# Save the plot with the updated filename
|
306 |
+
plot_filename = f"parity_plot_{model_type}_{opt_status}.png"
|
307 |
+
plt.savefig(path.join(model_dir, plot_filename), dpi=300)
|
308 |
+
|
309 |
+
plt.show()
|
310 |
+
|
311 |
+
1 + 1
|
312 |
+
|
313 |
+
|
314 |
+
# %% Code Graveyard
|
315 |
+
|
316 |
+
# # Compute cross-validated score
|
317 |
+
# cv_score = cross_val_score(
|
318 |
+
# model, X1, y1, cv=5, scoring="neg_mean_squared_error"
|
319 |
+
# )
|
320 |
+
# cv_scores[name1] = np.sqrt(np.abs(cv_score.mean()))
|