import gradio as gr | |
from surrogate import CrabNetSurrogateModel | |
model = CrabNetSurrogateModel() | |
example_parameterization = parameterization = { | |
"N": 3, | |
"alpha": 0.5, | |
"d_model": 512, | |
"dim_feedforward": 2048, | |
"dropout": 0.1, | |
"emb_scaler": 1.0, | |
"epochs_step": 10, | |
"eps": 0.000001, | |
"fudge": 0.02, | |
"heads": 4, | |
"k": 6, | |
"lr": 0.001, | |
"pe_resolution": 5000, | |
"ple_resolution": 5000, | |
"pos_scaler": 1.0, | |
"weight_decay": 0, | |
"batch_size": 32, | |
"out_hidden4": 128, | |
"betas2": 0.9, | |
"betas1": 0.999, | |
"losscurve": False, | |
"learningcurve": False, | |
"bias": False, | |
"criterion": "RobustL1", | |
"elem_prop": "mat2vec", | |
"train_frac": 0.5, | |
} | |
model.surrogate_evaluate(example_parameterization) | |
def greet(name): | |
return "Hello " + name + "!!" | |
iface = gr.Interface(fn=greet, inputs="text", outputs="text") | |
iface.launch() | |