Spaces:
Sleeping
Sleeping
AbstractQbit
commited on
Commit
·
41d22ed
1
Parent(s):
666c725
Add
Browse files
app.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 2 |
+
import torch
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import pickle
|
| 5 |
+
|
| 6 |
+
torch.autograd.set_grad_enabled(False)
|
| 7 |
+
|
| 8 |
+
sklearn_model = pickle.load(open('classic_pipeline.pickle', 'rb'))
|
| 9 |
+
|
| 10 |
+
model_name = "AbstractQbit/electra_large_imdb_htsplice"
|
| 11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 12 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def tokenize_with_splicing(text):
|
| 16 |
+
tokens = tokenizer(text, truncation=False)
|
| 17 |
+
if len(tokens['input_ids']) > 512:
|
| 18 |
+
tokens['input_ids'] = tokens['input_ids'][:129] + \
|
| 19 |
+
[102] + tokens['input_ids'][-382:]
|
| 20 |
+
tokens['token_type_ids'] = [0]*512
|
| 21 |
+
tokens['attention_mask'] = [1]*512
|
| 22 |
+
return tokens
|
| 23 |
+
|
| 24 |
+
def make_stars(prob):
|
| 25 |
+
stars = round(1 + prob*9)
|
| 26 |
+
return '★'*stars + '☆'*(10-stars)
|
| 27 |
+
|
| 28 |
+
def run_models(review):
|
| 29 |
+
prob_sklearn = float(sklearn_model.predict_proba([review])[0][1])
|
| 30 |
+
label_sklearn = 'positive' if prob_sklearn > 0.5 else 'negative'
|
| 31 |
+
res = f"TF-IDF SVC thinks the review is {label_sklearn} ({100*prob_sklearn:.2f}% positive).\n{make_stars(prob_sklearn):s}\n\n"
|
| 32 |
+
|
| 33 |
+
input = tokenize_with_splicing(review).convert_to_tensors('pt', True)
|
| 34 |
+
output = torch.nn.functional.softmax(model(**input).logits, dim=1)
|
| 35 |
+
prob_electra = float(output[0][1])
|
| 36 |
+
label_electra = 'positive' if prob_electra > 0.5 else 'negative'
|
| 37 |
+
res += f"ELECTRA thinks the review is {label_electra} ({100*prob_electra:.2f}% positive).\n{make_stars(prob_electra):s}"
|
| 38 |
+
|
| 39 |
+
return res
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
demo = gr.Interface(
|
| 43 |
+
fn=run_models,
|
| 44 |
+
inputs="text",
|
| 45 |
+
outputs="text",
|
| 46 |
+
title="Movie review classification",
|
| 47 |
+
allow_flagging='never'
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
demo.launch()
|