Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import requests | |
import pickle | |
# Load the processed data and similarity matrix | |
with open('movie_data.pkl', 'rb') as file: | |
movies, cosine_sim = pickle.load(file) | |
# Function to get movie recommendations | |
def get_recommendations(title, cosine_sim=cosine_sim): | |
idx = movies[movies['title'] == title].index[0] | |
sim_scores = list(enumerate(cosine_sim[idx])) | |
sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True) | |
sim_scores = sim_scores[1:11] # Get top 10 similar movies | |
movie_indices = [i[0] for i in sim_scores] | |
return movies[['title', 'movie_id']].iloc[movie_indices] | |
# Fetch movie poster and additional details using append_to_response | |
def fetch_movie_data(movie_id): | |
api_key = "5c1c27e14a6a61a873db79d82528056f" | |
url = f'https://api.themoviedb.org/3/movie/{movie_id}?api_key={api_key}&append_to_response=videos,images' | |
try: | |
response = requests.get(url) | |
response.raise_for_status() | |
data = response.json() | |
# Handle poster path | |
poster_path = data.get('poster_path') | |
poster_url = f"https://image.tmdb.org/t/p/w500{poster_path}" if poster_path else \ | |
"https://via.placeholder.com/500x750?text=No+Image+Available" | |
# Handle trailer safely | |
videos = data.get('videos', {}).get('results', []) | |
trailer = next((v for v in videos if v.get('type') == 'Trailer'), None) | |
# Handle backdrop safely | |
backdrops = data.get('images', {}).get('backdrops', []) | |
backdrop_path = backdrops[0].get('file_path') if backdrops else '' | |
# Handle overview | |
overview = data.get('overview', 'No description available')[:100] + "..." | |
return { | |
'poster': poster_url, | |
'trailer_key': trailer.get('key') if trailer else None, | |
'backdrop': backdrop_path, | |
'overview': overview | |
} | |
except requests.exceptions.RequestException as e: | |
st.error(f"API Error: {str(e)}") | |
return { | |
'poster': "https://via.placeholder.com/500x750?text=No+Image+Available", | |
'trailer_key': None, | |
'backdrop': '', | |
'overview': 'No description available' | |
} | |
# Streamlit UI | |
st.title("Movie Recommendation System") | |
selected_movie = st.selectbox("Select a movie:", movies['title'].values) | |
if st.button('Recommend'): | |
recommendations = get_recommendations(selected_movie) | |
st.write("Top 10 recommended movies:") | |
# Create a 2x5 grid layout | |
for i in range(0, 10, 5): # Loop over rows (2 rows, 5 movies each) | |
cols = st.columns(5) # Create 5 columns for each row | |
for col, j in zip(cols, range(i, i+5)): | |
if j < len(recommendations): | |
movie_title = recommendations.iloc[j]['title'] | |
movie_id = recommendations.iloc[j]['movie_id'] | |
movie_data = fetch_movie_data(movie_id) | |
with col: | |
st.image(movie_data['poster'], width=130, caption=movie_title) | |
if movie_data['trailer_key']: | |
st.markdown(f"[Watch Trailer](https://www.youtube.com/watch?v={movie_data['trailer_key']})") | |
st.write(movie_data['overview'][:100] + "...") |