Spaces:
Runtime error
Runtime error
import os | |
import time | |
import streamlit as st | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain.prompts import PromptTemplate | |
from langchain.memory import ConversationBufferWindowMemory | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain_together import Together | |
from footer import footer # Ensure this module is present in the working directory | |
# Set Streamlit configuration | |
st.set_page_config(page_title="AI Legal App", layout="centered") | |
# Display a logo or banner (replace with a local image or URL) | |
col1, col2, col3 = st.columns([1, 30, 1]) | |
with col2: | |
st.image("https://github.com/Nike-one/BharatLAW/blob/master/images/banner.png?raw=true", use_column_width=True) | |
def hide_hamburger_menu(): | |
st.markdown(""" | |
<style> | |
#MainMenu {visibility: hidden;} | |
footer {visibility: hidden;} | |
</style> | |
""", unsafe_allow_html=True) | |
hide_hamburger_menu() | |
# Initialize session state | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
if "memory" not in st.session_state: | |
st.session_state.memory = ConversationBufferWindowMemory(k=2, memory_key="chat_history", return_messages=True) | |
def load_embeddings(): | |
"""Load and cache the embeddings model.""" | |
return HuggingFaceEmbeddings(model_name="law-ai/InLegalBERT") | |
embeddings = load_embeddings() | |
db = FAISS.load_local("ipc_embed_db", embeddings, allow_dangerous_deserialization=True) | |
db_retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 3}) | |
prompt_template = """ | |
<s>[INST] | |
As a legal chatbot specializing in Indian law, your responses must be concise and accurate: | |
- Provide bullet points summarizing key legal aspects. | |
- Avoid assumptions or overly specific advice unless requested. | |
- Clarify any common misconceptions. | |
- Keep responses aligned with general legal principles. | |
CONTEXT: {context} | |
CHAT HISTORY: {chat_history} | |
QUESTION: {question} | |
ANSWER: | |
</s>[INST] | |
""" | |
prompt = PromptTemplate(template=prompt_template, | |
input_variables=['context', 'question', 'chat_history']) | |
api_key = os.getenv('TOGETHER_API_KEY') | |
llm = Together(model="mistralai/Mixtral-8x22B-Instruct-v0.1", temperature=0.5, max_tokens=1024, together_api_key=api_key) | |
qa = ConversationalRetrievalChain.from_llm(llm=llm, memory=st.session_state.memory, retriever=db_retriever, combine_docs_chain_kwargs={'prompt': prompt}) | |
def extract_answer(full_response): | |
"""Extracts the assistant's answer from the response.""" | |
return full_response.strip() | |
def reset_conversation(): | |
st.session_state.messages = [] | |
st.session_state.memory.clear() | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.write(message["content"]) | |
input_prompt = st.chat_input("Ask your legal query...") | |
if input_prompt: | |
with st.chat_message("user"): | |
st.markdown(f"**You:** {input_prompt}") | |
st.session_state.messages.append({"role": "user", "content": input_prompt}) | |
with st.chat_message("assistant"): | |
with st.spinner("Analyzing..."): | |
result = qa.invoke(input=input_prompt) | |
message_placeholder = st.empty() | |
answer = extract_answer(result["answer"]) | |
# Simulated typing effect | |
response = "" | |
for char in answer: | |
response += char | |
time.sleep(0.02) | |
message_placeholder.markdown(response + " |", unsafe_allow_html=True) | |
st.session_state.messages.append({"role": "assistant", "content": answer}) | |
if st.button('ποΈ Reset Chat', on_click=reset_conversation): | |
st.experimental_rerun() | |
footer() | |