style-transfer / app.py
Abinanthan's picture
Create app.py
61e3be9 verified
raw
history blame
1.41 kB
import numpy as np
import tensorflow as tf
import tensorflow_hub as hub
import matplotlib.pyplot as plt
import gradio as gr
from tensorflow.keras.preprocessing import image
from PIL import Image
def style_transfer(content_image, style_image):
# content_image = plt.imread(content_image)
# style_image = plt.imread(style_image)
content_image = content_image.astype(np.float32)[np.newaxis, ...] / 255.
style_image = style_image.astype(np.float32)[np.newaxis, ...] / 255.
try:
hub_module = hub.load('https://www.kaggle.com/models/google/arbitrary-image-stylization-v1/TensorFlow1/256/2')
except OSError:
print("Downloading pre-trained model...")
hub_module = tf.saved_model.load('https://tfhub.dev/google/arbitrary-image-stylization-v1/256')
outputs = hub_module(tf.constant(content_image), tf.constant(style_image))
stylized_image = outputs[0].numpy()
stylized_image = stylized_image[0] * 255.
stylized_image = stylized_image.astype(np.uint8)
stylized_image = Image.fromarray(stylized_image)
return stylized_image
interface = gr.Interface(
fn=style_transfer,
inputs=[
gr.Image(label="Content Image (Upload your photo)"),
gr.Image(label="Style Image (Choose an artistic style)"),
],
outputs="image",
title="Style Transfer App",
description="Apply artistic styles to your photos using deep learning!",
)
interface.launch(debug=True)