Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
import argparse | |
import pathlib | |
from torch.nn import functional as F | |
from show import * | |
from per_segment_anything import sam_model_registry, SamPredictor | |
parser = argparse.ArgumentParser() | |
parser.add_argument("-op", "--output-path", type=str, default='default') | |
args = parser.parse_args() | |
def point_selection(mask_sim, topk=1): | |
# Top-1 point selection | |
w, h = mask_sim.shape | |
topk_xy = mask_sim.flatten(0).topk(topk)[1] | |
topk_x = (topk_xy // h).unsqueeze(0) | |
topk_y = (topk_xy - topk_x * h) | |
topk_xy = torch.cat((topk_y, topk_x), dim=0).permute(1, 0) | |
topk_label = np.array([1] * topk) | |
topk_xy = topk_xy.cpu().numpy() | |
# Top-last point selection | |
last_xy = mask_sim.flatten(0).topk(topk, largest=False)[1] | |
last_x = (last_xy // h).unsqueeze(0) | |
last_y = (last_xy - last_x * h) | |
last_xy = torch.cat((last_y, last_x), dim=0).permute(1, 0) | |
last_label = np.array([0] * topk) | |
last_xy = last_xy.cpu().numpy() | |
return topk_xy, topk_label, last_xy, last_label | |
def reset_data(): | |
global cache_data | |
cache_data = None | |
def inference_scribble(image): | |
# in context image and mask | |
ic_image = image["image"] | |
ic_mask = image["mask"] | |
ic_image = np.array(ic_image.convert("RGB")) | |
ic_mask = np.array(ic_mask.convert("RGB")) | |
# sam_type, sam_ckpt = 'vit_h', 'sam_vit_h_4b8939.pth' # SAM Model | |
sam_type, sam_ckpt = 'vit_t', 'weights/mobile_sam.pt' # MobileSAM | |
# sam = sam_model_registry[sam_type](checkpoint=sam_ckpt).cuda() #SAM loading | |
sam = sam_model_registry[sam_type](checkpoint=sam_ckpt) #SAM loading | |
# sam = sam_model_registry[sam_type](checkpoint=sam_ckpt) # MObileSAM loading | |
predictor = SamPredictor(sam) | |
# Image features encoding | |
ref_mask = predictor.set_image(ic_image, ic_mask) | |
ref_feat = predictor.features.squeeze().permute(1, 2, 0) | |
ref_mask = F.interpolate(ref_mask, size=ref_feat.shape[0: 2], mode="bilinear") | |
ref_mask = ref_mask.squeeze()[0] | |
# Target feature extraction | |
print("======> Obtain Location Prior" ) | |
target_feat = ref_feat[ref_mask > 0] | |
target_embedding = target_feat.mean(0).unsqueeze(0) | |
target_feat = target_embedding / target_embedding.norm(dim=-1, keepdim=True) | |
target_embedding = target_embedding.unsqueeze(0) | |
test_image = ic_image | |
outputs = [] | |
print("======> Testing Image") | |
# Image feature encoding | |
predictor.set_image(test_image) | |
test_feat = predictor.features.squeeze() | |
# Cosine similarity | |
C, h, w = test_feat.shape | |
test_feat = test_feat / test_feat.norm(dim=0, keepdim=True) | |
test_feat = test_feat.reshape(C, h * w) | |
sim = target_feat @ test_feat | |
sim = sim.reshape(1, 1, h, w) | |
sim = F.interpolate(sim, scale_factor=4, mode="bilinear") | |
sim = predictor.model.postprocess_masks( | |
sim, | |
input_size=predictor.input_size, | |
original_size=predictor.original_size).squeeze() | |
# Positive-negative location prior | |
topk_xy_i, topk_label_i, last_xy_i, last_label_i = point_selection(sim, topk=1) | |
topk_xy = np.concatenate([topk_xy_i, last_xy_i], axis=0) | |
topk_label = np.concatenate([topk_label_i, last_label_i], axis=0) | |
# Obtain the target guidance for cross-attention layers | |
sim = (sim - sim.mean()) / torch.std(sim) | |
sim = F.interpolate(sim.unsqueeze(0).unsqueeze(0), size=(64, 64), mode="bilinear") | |
attn_sim = sim.sigmoid_().unsqueeze(0).flatten(3) | |
# First-step prediction | |
masks, scores, logits, _ = predictor.predict( | |
point_coords=topk_xy, | |
point_labels=topk_label, | |
multimask_output=True, | |
attn_sim=attn_sim, # Target-guided Attention | |
target_embedding=target_embedding # Target-semantic Prompting | |
) | |
best_idx = 0 | |
# Cascaded Post-refinement-1 | |
masks, scores, logits, _ = predictor.predict( | |
point_coords=topk_xy, | |
point_labels=topk_label, | |
mask_input=logits[best_idx: best_idx + 1, :, :], | |
multimask_output=True) | |
best_idx = np.argmax(scores) | |
# Cascaded Post-refinement-2 | |
y, x = np.nonzero(masks[best_idx]) | |
x_min = x.min() | |
x_max = x.max() | |
y_min = y.min() | |
y_max = y.max() | |
input_box = np.array([x_min, y_min, x_max, y_max]) | |
masks, scores, logits, _ = predictor.predict( | |
point_coords=topk_xy, | |
point_labels=topk_label, | |
box=input_box[None, :], | |
mask_input=logits[best_idx: best_idx + 1, :, :], | |
multimask_output=True) | |
best_idx = np.argmax(scores) | |
final_mask = masks[best_idx] | |
mask_colors = np.zeros((final_mask.shape[0], final_mask.shape[1], 3), dtype=np.uint8) | |
mask_colors[final_mask, :] = np.array([[128, 0, 0]]) | |
# Save annotations | |
return [Image.fromarray((mask_colors * 0.6 + test_image * 0.4).astype('uint8'), 'RGB'), | |
Image.fromarray((mask_colors ).astype('uint8'), 'RGB')] | |
''' | |
demo = gr.Interface(fn=inference_scribble, | |
inputs=gr.Image(label="[Stroke] Draw on Image", tool='sketch',type='pil'), | |
outputs=[ | |
gr.Image(type="pil", label="Mask with Image"), | |
gr.Image(type="pil", label="Mask") | |
], | |
title="SAM based Segment Annotator.", | |
description='Sketch the portion where you want to create Mask.', | |
examples=[ | |
"./cardamage_example/0006.JPEG", | |
"./cardamage_example/0008.JPEG", | |
"./cardamage_example/0206.JPEG" | |
] | |
) | |
demo.launch(enable_queue=False) | |
''' | |
with gr.Blocks() as demo: | |
gr.Markdown("# How to use") | |
gr.Markdown("To start, input an image, then use the brush to create dots on the object which you want to segment, don't worry if your dots aren't perfect as the code will find the middle of each drawn item. Then press the segment button to create masks for the object that the dots are on.") | |
gr.Markdown("# Demo to run Segment Anything base model") | |
gr.Markdown("""This app uses the [Segment Anything](https://huggingface.co/facebook/sam-vit-base) model from Meta to get a mask from a points in an image. | |
""") | |
with gr.Row(): | |
image_input = gr.Image(label="[Stroke] Draw on Image", tool='sketch',type='pil') | |
image_output1 = gr.Image(type="pil", label="Mask with Image") | |
with gr.Row(): | |
examples = gr.Examples(examples=["./cardamage_example/0006.JPEG", | |
"./cardamage_example/0008.JPEG", | |
"./cardamage_example/0206.JPEG"], | |
inputs=image_input) | |
image_output2 = gr.Image(type="pil", label="Mask") | |
image_button = gr.Button("Genarate-Segment-Mask", variant='primary') | |
image_button.click(inference_scribble, inputs=image_input, outputs=[image_output1, image_output2]) | |
image_input.upload(reset_data) | |
demo.launch() | |