KLING-Virtual-Tryon / image_generation.py
Abhlash's picture
Create image_generation.py
cb9b654 verified
raw
history blame
3.09 kB
import replicate
from PIL import Image
import io
import requests
import base64
def generate_image(
prompt,
num_steps=30,
guidance_scale=7.5,
aspect_ratio="1:1",
replicate_api_key=None,
lora_url=None,
negative_prompt=None
):
"""
Generate an image using Stable Diffusion via Replicate API
Args:
prompt (str): The text prompt for image generation
num_steps (int): Number of inference steps
guidance_scale (float): Guidance scale for generation
aspect_ratio (str): Desired aspect ratio ("1:1", "16:9", "3:2", etc.)
replicate_api_key (str): API key for Replicate
lora_url (str, optional): URL to LoRA weights
negative_prompt (str, optional): Negative prompt for generation
"""
try:
if not replicate_api_key:
return None, "Please provide a Replicate API key"
# Set up aspect ratio dimensions
aspect_ratios = {
"1:1": (512, 512),
"16:9": (912, 512),
"3:2": (768, 512),
"2:3": (512, 768),
"4:5": (512, 640),
"5:4": (640, 512)
}
width, height = aspect_ratios.get(aspect_ratio, (512, 512))
# Configure model parameters
model_params = {
"prompt": prompt,
"negative_prompt": negative_prompt or "ugly, blurry, low quality, distorted, deformed",
"num_inference_steps": num_steps,
"guidance_scale": guidance_scale,
"width": width,
"height": height,
"scheduler": "DPMSolverMultistep", # You can experiment with different schedulers
"num_outputs": 1,
}
# Add LoRA if specified
if lora_url:
model_params["lora_urls"] = lora_url
# Set API key
client = replicate.Client(api_token=replicate_api_key)
# Run the model
# Using SDXL model for better quality
output = client.run(
"stability-ai/sdxl:39ed52f2a78e934b3ba6e2a89f5b1c712de7dfea535525255b1aa35c5565e08b",
input=model_params
)
# Get the image URL from output
if output and len(output) > 0:
image_url = output[0]
# Download and convert to PIL Image
response = requests.get(image_url)
if response.status_code == 200:
image = Image.open(io.BytesIO(response.content))
return image, "Success"
else:
return None, f"Failed to download image: {response.status_code}"
else:
return None, "No image generated"
except Exception as e:
return None, f"Error generating image: {str(e)}"
def encode_image_to_base64(image):
"""Helper function to convert PIL Image to base64 string"""
if isinstance(image, Image.Image):
buffered = io.BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode('utf-8')
return None