| import os | |
| from dotenv import load_dotenv | |
| from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace | |
| from langchain_core.runnables import RunnablePassthrough | |
| import schemas | |
| from prompts import ( | |
| raw_prompt, | |
| format_context, | |
| ) | |
| # from data_indexing import DataIndexer | |
| load_dotenv() | |
| # data_indexer = DataIndexer() | |
| MODEL_ID = "mistralai/Mistral-7B-Instruct-v0.3" | |
| llm = HuggingFaceEndpoint( | |
| model=MODEL_ID, | |
| huggingfacehub_api_token=os.environ['HF_TOKEN'], | |
| max_new_tokens=512, | |
| stop_sequences=["[EOS]", "<|end_of_text|>"], | |
| streaming=True, | |
| ) | |
| chat_model = ChatHuggingFace(llm=llm) | |
| simple_chain = (raw_prompt | chat_model).with_types(input_type=schemas.UserQuestion) | |
| # # TODO: create formatted_chain by piping raw_prompt_formatted and the LLM endpoint. | |
| # formatted_chain = None | |
| # # TODO: use history_prompt_formatted and HistoryInput to create the history_chain | |
| # history_chain = None | |
| # # TODO: Let's construct the standalone_chain by piping standalone_prompt_formatted with the LLM | |
| # standalone_chain = None | |
| # input_1 = RunnablePassthrough.assign(new_question=standalone_chain) | |
| # input_2 = { | |
| # 'context': lambda x: format_context(data_indexer.search(x['new_question'])), | |
| # 'standalone_question': lambda x: x['new_question'] | |
| # } | |
| # input_to_rag_chain = input_1 | input_2 | |
| # # TODO: use input_to_rag_chain, rag_prompt_formatted, | |
| # # HistoryInput and the LLM to build the rag_chain. | |
| # rag_chain = None | |
| # # TODO: Implement the filtered_rag_chain. It should be the | |
| # # same as the rag_chain but with hybrid_search = True. | |
| # filtered_rag_chain = None | |