Spaces:
Runtime error
Runtime error
| # YOLOv5 🚀 by Ultralytics, GPL-3.0 license | |
| """ | |
| Validate a trained YOLOv5 segment model on a segment dataset | |
| Usage: | |
| $ bash data/scripts/get_coco.sh --val --segments # download COCO-segments val split (1G, 5000 images) | |
| $ python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 # validate COCO-segments | |
| Usage - formats: | |
| $ python segment/val.py --weights yolov5s-seg.pt # PyTorch | |
| yolov5s-seg.torchscript # TorchScript | |
| yolov5s-seg.onnx # ONNX Runtime or OpenCV DNN with --dnn | |
| yolov5s-seg_openvino_label # OpenVINO | |
| yolov5s-seg.engine # TensorRT | |
| yolov5s-seg.mlmodel # CoreML (macOS-only) | |
| yolov5s-seg_saved_model # TensorFlow SavedModel | |
| yolov5s-seg.pb # TensorFlow GraphDef | |
| yolov5s-seg.tflite # TensorFlow Lite | |
| yolov5s-seg_edgetpu.tflite # TensorFlow Edge TPU | |
| yolov5s-seg_paddle_model # PaddlePaddle | |
| """ | |
| import argparse | |
| import json | |
| import os | |
| import sys | |
| from multiprocessing.pool import ThreadPool | |
| from pathlib import Path | |
| import numpy as np | |
| import torch | |
| from tqdm import tqdm | |
| FILE = Path(__file__).resolve() | |
| ROOT = FILE.parents[1] # YOLOv5 root directory | |
| if str(ROOT) not in sys.path: | |
| sys.path.append(str(ROOT)) # add ROOT to PATH | |
| ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative | |
| import torch.nn.functional as F | |
| from models.common import DetectMultiBackend | |
| from models.yolo import SegmentationModel | |
| from utils.callbacks import Callbacks | |
| from utils.general import ( | |
| LOGGER, | |
| NUM_THREADS, | |
| TQDM_BAR_FORMAT, | |
| Profile, | |
| check_dataset, | |
| check_img_size, | |
| check_requirements, | |
| check_yaml, | |
| coco80_to_coco91_class, | |
| colorstr, | |
| increment_path, | |
| non_max_suppression, | |
| print_args, | |
| scale_boxes, | |
| xywh2xyxy, | |
| xyxy2xywh, | |
| ) | |
| from utils.metrics import ConfusionMatrix, box_iou | |
| from utils.plots import output_to_target, plot_val_study | |
| from utils.segment.dataloaders import create_dataloader | |
| from utils.segment.general import ( | |
| mask_iou, | |
| process_mask, | |
| process_mask_native, | |
| scale_image, | |
| ) | |
| from utils.segment.metrics import Metrics, ap_per_class_box_and_mask | |
| from utils.segment.plots import plot_images_and_masks | |
| from utils.torch_utils import de_parallel, select_device, smart_inference_mode | |
| def save_one_txt(predn, save_conf, shape, file): | |
| # Save one txt result | |
| gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh | |
| for *xyxy, conf, cls in predn.tolist(): | |
| xywh = ( | |
| (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() | |
| ) # normalized xywh | |
| line = ( | |
| (cls, *xywh, conf) if save_conf else (cls, *xywh) | |
| ) # label format | |
| with open(file, "a") as f: | |
| f.write(("%g " * len(line)).rstrip() % line + "\n") | |
| def save_one_json(predn, jdict, path, class_map, pred_masks): | |
| # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236} | |
| from pycocotools.mask import encode | |
| def single_encode(x): | |
| rle = encode(np.asarray(x[:, :, None], order="F", dtype="uint8"))[0] | |
| rle["counts"] = rle["counts"].decode("utf-8") | |
| return rle | |
| image_id = int(path.stem) if path.stem.isnumeric() else path.stem | |
| box = xyxy2xywh(predn[:, :4]) # xywh | |
| box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner | |
| pred_masks = np.transpose(pred_masks, (2, 0, 1)) | |
| with ThreadPool(NUM_THREADS) as pool: | |
| rles = pool.map(single_encode, pred_masks) | |
| for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())): | |
| jdict.append( | |
| { | |
| "image_id": image_id, | |
| "category_id": class_map[int(p[5])], | |
| "bbox": [round(x, 3) for x in b], | |
| "score": round(p[4], 5), | |
| "segmentation": rles[i], | |
| } | |
| ) | |
| def process_batch( | |
| detections, | |
| labels, | |
| iouv, | |
| pred_masks=None, | |
| gt_masks=None, | |
| overlap=False, | |
| masks=False, | |
| ): | |
| """ | |
| Return correct prediction matrix | |
| Arguments: | |
| detections (array[N, 6]), x1, y1, x2, y2, conf, class | |
| labels (array[M, 5]), class, x1, y1, x2, y2 | |
| Returns: | |
| correct (array[N, 10]), for 10 IoU levels | |
| """ | |
| if masks: | |
| if overlap: | |
| nl = len(labels) | |
| index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1 | |
| gt_masks = gt_masks.repeat( | |
| nl, 1, 1 | |
| ) # shape(1,640,640) -> (n,640,640) | |
| gt_masks = torch.where(gt_masks == index, 1.0, 0.0) | |
| if gt_masks.shape[1:] != pred_masks.shape[1:]: | |
| gt_masks = F.interpolate( | |
| gt_masks[None], | |
| pred_masks.shape[1:], | |
| mode="bilinear", | |
| align_corners=False, | |
| )[0] | |
| gt_masks = gt_masks.gt_(0.5) | |
| iou = mask_iou( | |
| gt_masks.view(gt_masks.shape[0], -1), | |
| pred_masks.view(pred_masks.shape[0], -1), | |
| ) | |
| else: # boxes | |
| iou = box_iou(labels[:, 1:], detections[:, :4]) | |
| correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool) | |
| correct_class = labels[:, 0:1] == detections[:, 5] | |
| for i in range(len(iouv)): | |
| x = torch.where( | |
| (iou >= iouv[i]) & correct_class | |
| ) # IoU > threshold and classes match | |
| if x[0].shape[0]: | |
| matches = ( | |
| torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1) | |
| .cpu() | |
| .numpy() | |
| ) # [label, detect, iou] | |
| if x[0].shape[0] > 1: | |
| matches = matches[matches[:, 2].argsort()[::-1]] | |
| matches = matches[ | |
| np.unique(matches[:, 1], return_index=True)[1] | |
| ] | |
| # matches = matches[matches[:, 2].argsort()[::-1]] | |
| matches = matches[ | |
| np.unique(matches[:, 0], return_index=True)[1] | |
| ] | |
| correct[matches[:, 1].astype(int), i] = True | |
| return torch.tensor(correct, dtype=torch.bool, device=iouv.device) | |
| def run( | |
| data, | |
| weights=None, # model.pt path(s) | |
| batch_size=32, # batch size | |
| imgsz=640, # inference size (pixels) | |
| conf_thres=0.001, # confidence threshold | |
| iou_thres=0.6, # NMS IoU threshold | |
| max_det=300, # maximum detections per image | |
| task="val", # train, val, test, speed or study | |
| device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu | |
| workers=8, # max dataloader workers (per RANK in DDP mode) | |
| single_cls=False, # treat as single-class dataset | |
| augment=False, # augmented inference | |
| verbose=False, # verbose output | |
| save_txt=False, # save results to *.txt | |
| save_hybrid=False, # save label+prediction hybrid results to *.txt | |
| save_conf=False, # save confidences in --save-txt labels | |
| save_json=False, # save a COCO-JSON results file | |
| project=ROOT / "runs/val-seg", # save to project/name | |
| name="exp", # save to project/name | |
| exist_ok=False, # existing project/name ok, do not increment | |
| half=True, # use FP16 half-precision inference | |
| dnn=False, # use OpenCV DNN for ONNX inference | |
| model=None, | |
| dataloader=None, | |
| save_dir=Path(""), | |
| plots=True, | |
| overlap=False, | |
| mask_downsample_ratio=1, | |
| compute_loss=None, | |
| callbacks=Callbacks(), | |
| ): | |
| if save_json: | |
| check_requirements("pycocotools>=2.0.6") | |
| process = process_mask_native # more accurate | |
| else: | |
| process = process_mask # faster | |
| # Initialize/load model and set device | |
| training = model is not None | |
| if training: # called by train.py | |
| device, pt, jit, engine = ( | |
| next(model.parameters()).device, | |
| True, | |
| False, | |
| False, | |
| ) # get model device, PyTorch model | |
| half &= device.type != "cpu" # half precision only supported on CUDA | |
| model.half() if half else model.float() | |
| nm = de_parallel(model).model[-1].nm # number of masks | |
| else: # called directly | |
| device = select_device(device, batch_size=batch_size) | |
| # Directories | |
| save_dir = increment_path( | |
| Path(project) / name, exist_ok=exist_ok | |
| ) # increment run | |
| (save_dir / "labels" if save_txt else save_dir).mkdir( | |
| parents=True, exist_ok=True | |
| ) # make dir | |
| # Load model | |
| model = DetectMultiBackend( | |
| weights, device=device, dnn=dnn, data=data, fp16=half | |
| ) | |
| stride, pt, jit, engine = ( | |
| model.stride, | |
| model.pt, | |
| model.jit, | |
| model.engine, | |
| ) | |
| imgsz = check_img_size(imgsz, s=stride) # check image size | |
| half = model.fp16 # FP16 supported on limited backends with CUDA | |
| nm = ( | |
| de_parallel(model).model.model[-1].nm | |
| if isinstance(model, SegmentationModel) | |
| else 32 | |
| ) # number of masks | |
| if engine: | |
| batch_size = model.batch_size | |
| else: | |
| device = model.device | |
| if not (pt or jit): | |
| batch_size = 1 # export.py models default to batch-size 1 | |
| LOGGER.info( | |
| f"Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models" | |
| ) | |
| # Data | |
| data = check_dataset(data) # check | |
| # Configure | |
| model.eval() | |
| cuda = device.type != "cpu" | |
| is_coco = isinstance(data.get("val"), str) and data["val"].endswith( | |
| f"coco{os.sep}val2017.txt" | |
| ) # COCO dataset | |
| nc = 1 if single_cls else int(data["nc"]) # number of classes | |
| iouv = torch.linspace( | |
| 0.5, 0.95, 10, device=device | |
| ) # iou vector for mAP@0.5:0.95 | |
| niou = iouv.numel() | |
| # Dataloader | |
| if not training: | |
| if pt and not single_cls: # check --weights are trained on --data | |
| ncm = model.model.nc | |
| assert ncm == nc, ( | |
| f"{weights} ({ncm} classes) trained on different --data than what you passed ({nc} " | |
| f"classes). Pass correct combination of --weights and --data that are trained together." | |
| ) | |
| model.warmup( | |
| imgsz=(1 if pt else batch_size, 3, imgsz, imgsz) | |
| ) # warmup | |
| pad, rect = ( | |
| (0.0, False) if task == "speed" else (0.5, pt) | |
| ) # square inference for benchmarks | |
| task = ( | |
| task if task in ("train", "val", "test") else "val" | |
| ) # path to train/val/test images | |
| dataloader = create_dataloader( | |
| data[task], | |
| imgsz, | |
| batch_size, | |
| stride, | |
| single_cls, | |
| pad=pad, | |
| rect=rect, | |
| workers=workers, | |
| prefix=colorstr(f"{task}: "), | |
| overlap_mask=overlap, | |
| mask_downsample_ratio=mask_downsample_ratio, | |
| )[0] | |
| seen = 0 | |
| confusion_matrix = ConfusionMatrix(nc=nc) | |
| names = ( | |
| model.names if hasattr(model, "names") else model.module.names | |
| ) # get class names | |
| if isinstance(names, (list, tuple)): # old format | |
| names = dict(enumerate(names)) | |
| class_map = coco80_to_coco91_class() if is_coco else list(range(1000)) | |
| s = ("%22s" + "%11s" * 10) % ( | |
| "Class", | |
| "Images", | |
| "Instances", | |
| "Box(P", | |
| "R", | |
| "mAP50", | |
| "mAP50-95)", | |
| "Mask(P", | |
| "R", | |
| "mAP50", | |
| "mAP50-95)", | |
| ) | |
| dt = Profile(), Profile(), Profile() | |
| metrics = Metrics() | |
| loss = torch.zeros(4, device=device) | |
| jdict, stats = [], [] | |
| # callbacks.run('on_val_start') | |
| pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT) # progress bar | |
| for batch_i, (im, targets, paths, shapes, masks) in enumerate(pbar): | |
| # callbacks.run('on_val_batch_start') | |
| with dt[0]: | |
| if cuda: | |
| im = im.to(device, non_blocking=True) | |
| targets = targets.to(device) | |
| masks = masks.to(device) | |
| masks = masks.float() | |
| im = im.half() if half else im.float() # uint8 to fp16/32 | |
| im /= 255 # 0 - 255 to 0.0 - 1.0 | |
| ( | |
| nb, | |
| _, | |
| height, | |
| width, | |
| ) = im.shape # batch size, channels, height, width | |
| # Inference | |
| with dt[1]: | |
| preds, protos, train_out = ( | |
| model(im) | |
| if compute_loss | |
| else (*model(im, augment=augment)[:2], None) | |
| ) | |
| # Loss | |
| if compute_loss: | |
| loss += compute_loss((train_out, protos), targets, masks)[ | |
| 1 | |
| ] # box, obj, cls | |
| # NMS | |
| targets[:, 2:] *= torch.tensor( | |
| (width, height, width, height), device=device | |
| ) # to pixels | |
| lb = ( | |
| [targets[targets[:, 0] == i, 1:] for i in range(nb)] | |
| if save_hybrid | |
| else [] | |
| ) # for autolabelling | |
| with dt[2]: | |
| preds = non_max_suppression( | |
| preds, | |
| conf_thres, | |
| iou_thres, | |
| labels=lb, | |
| multi_label=True, | |
| agnostic=single_cls, | |
| max_det=max_det, | |
| nm=nm, | |
| ) | |
| # Metrics | |
| plot_masks = [] # masks for plotting | |
| for si, (pred, proto) in enumerate(zip(preds, protos)): | |
| labels = targets[targets[:, 0] == si, 1:] | |
| nl, npr = ( | |
| labels.shape[0], | |
| pred.shape[0], | |
| ) # number of labels, predictions | |
| path, shape = Path(paths[si]), shapes[si][0] | |
| correct_masks = torch.zeros( | |
| npr, niou, dtype=torch.bool, device=device | |
| ) # init | |
| correct_bboxes = torch.zeros( | |
| npr, niou, dtype=torch.bool, device=device | |
| ) # init | |
| seen += 1 | |
| if npr == 0: | |
| if nl: | |
| stats.append( | |
| ( | |
| correct_masks, | |
| correct_bboxes, | |
| *torch.zeros((2, 0), device=device), | |
| labels[:, 0], | |
| ) | |
| ) | |
| if plots: | |
| confusion_matrix.process_batch( | |
| detections=None, labels=labels[:, 0] | |
| ) | |
| continue | |
| # Masks | |
| midx = [si] if overlap else targets[:, 0] == si | |
| gt_masks = masks[midx] | |
| pred_masks = process( | |
| proto, pred[:, 6:], pred[:, :4], shape=im[si].shape[1:] | |
| ) | |
| # Predictions | |
| if single_cls: | |
| pred[:, 5] = 0 | |
| predn = pred.clone() | |
| scale_boxes( | |
| im[si].shape[1:], predn[:, :4], shape, shapes[si][1] | |
| ) # native-space pred | |
| # Evaluate | |
| if nl: | |
| tbox = xywh2xyxy(labels[:, 1:5]) # target boxes | |
| scale_boxes( | |
| im[si].shape[1:], tbox, shape, shapes[si][1] | |
| ) # native-space labels | |
| labelsn = torch.cat( | |
| (labels[:, 0:1], tbox), 1 | |
| ) # native-space labels | |
| correct_bboxes = process_batch(predn, labelsn, iouv) | |
| correct_masks = process_batch( | |
| predn, | |
| labelsn, | |
| iouv, | |
| pred_masks, | |
| gt_masks, | |
| overlap=overlap, | |
| masks=True, | |
| ) | |
| if plots: | |
| confusion_matrix.process_batch(predn, labelsn) | |
| stats.append( | |
| ( | |
| correct_masks, | |
| correct_bboxes, | |
| pred[:, 4], | |
| pred[:, 5], | |
| labels[:, 0], | |
| ) | |
| ) # (conf, pcls, tcls) | |
| pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8) | |
| if plots and batch_i < 3: | |
| plot_masks.append(pred_masks[:15]) # filter top 15 to plot | |
| # Save/log | |
| if save_txt: | |
| save_one_txt( | |
| predn, | |
| save_conf, | |
| shape, | |
| file=save_dir / "labels" / f"{path.stem}.txt", | |
| ) | |
| if save_json: | |
| pred_masks = scale_image( | |
| im[si].shape[1:], | |
| pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), | |
| shape, | |
| shapes[si][1], | |
| ) | |
| save_one_json( | |
| predn, jdict, path, class_map, pred_masks | |
| ) # append to COCO-JSON dictionary | |
| # callbacks.run('on_val_image_end', pred, predn, path, names, im[si]) | |
| # Plot images | |
| if plots and batch_i < 3: | |
| if len(plot_masks): | |
| plot_masks = torch.cat(plot_masks, dim=0) | |
| plot_images_and_masks( | |
| im, | |
| targets, | |
| masks, | |
| paths, | |
| save_dir / f"val_batch{batch_i}_labels.jpg", | |
| names, | |
| ) | |
| plot_images_and_masks( | |
| im, | |
| output_to_target(preds, max_det=15), | |
| plot_masks, | |
| paths, | |
| save_dir / f"val_batch{batch_i}_pred.jpg", | |
| names, | |
| ) # pred | |
| # callbacks.run('on_val_batch_end') | |
| # Compute metrics | |
| stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy | |
| if len(stats) and stats[0].any(): | |
| results = ap_per_class_box_and_mask( | |
| *stats, plot=plots, save_dir=save_dir, names=names | |
| ) | |
| metrics.update(results) | |
| nt = np.bincount( | |
| stats[4].astype(int), minlength=nc | |
| ) # number of targets per class | |
| # Print results | |
| pf = "%22s" + "%11i" * 2 + "%11.3g" * 8 # print format | |
| LOGGER.info(pf % ("all", seen, nt.sum(), *metrics.mean_results())) | |
| if nt.sum() == 0: | |
| LOGGER.warning( | |
| f"WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels" | |
| ) | |
| # Print results per class | |
| if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats): | |
| for i, c in enumerate(metrics.ap_class_index): | |
| LOGGER.info(pf % (names[c], seen, nt[c], *metrics.class_result(i))) | |
| # Print speeds | |
| t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image | |
| if not training: | |
| shape = (batch_size, 3, imgsz, imgsz) | |
| LOGGER.info( | |
| f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}" | |
| % t | |
| ) | |
| # Plots | |
| if plots: | |
| confusion_matrix.plot(save_dir=save_dir, names=list(names.values())) | |
| # callbacks.run('on_val_end') | |
| ( | |
| mp_bbox, | |
| mr_bbox, | |
| map50_bbox, | |
| map_bbox, | |
| mp_mask, | |
| mr_mask, | |
| map50_mask, | |
| map_mask, | |
| ) = metrics.mean_results() | |
| # Save JSON | |
| if save_json and len(jdict): | |
| w = ( | |
| Path(weights[0] if isinstance(weights, list) else weights).stem | |
| if weights is not None | |
| else "" | |
| ) # weights | |
| anno_json = str( | |
| Path("../datasets/coco/annotations/instances_val2017.json") | |
| ) # annotations | |
| pred_json = str(save_dir / f"{w}_predictions.json") # predictions | |
| LOGGER.info(f"\nEvaluating pycocotools mAP... saving {pred_json}...") | |
| with open(pred_json, "w") as f: | |
| json.dump(jdict, f) | |
| try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb | |
| from pycocotools.coco import COCO | |
| from pycocotools.cocoeval import COCOeval | |
| anno = COCO(anno_json) # init annotations api | |
| pred = anno.loadRes(pred_json) # init predictions api | |
| results = [] | |
| for eval in COCOeval(anno, pred, "bbox"), COCOeval( | |
| anno, pred, "segm" | |
| ): | |
| if is_coco: | |
| eval.params.imgIds = [ | |
| int(Path(x).stem) for x in dataloader.dataset.im_files | |
| ] # img ID to evaluate | |
| eval.evaluate() | |
| eval.accumulate() | |
| eval.summarize() | |
| results.extend( | |
| eval.stats[:2] | |
| ) # update results (mAP@0.5:0.95, mAP@0.5) | |
| map_bbox, map50_bbox, map_mask, map50_mask = results | |
| except Exception as e: | |
| LOGGER.info(f"pycocotools unable to run: {e}") | |
| # Return results | |
| model.float() # for training | |
| if not training: | |
| s = ( | |
| f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" | |
| if save_txt | |
| else "" | |
| ) | |
| LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") | |
| final_metric = ( | |
| mp_bbox, | |
| mr_bbox, | |
| map50_bbox, | |
| map_bbox, | |
| mp_mask, | |
| mr_mask, | |
| map50_mask, | |
| map_mask, | |
| ) | |
| return ( | |
| (*final_metric, *(loss.cpu() / len(dataloader)).tolist()), | |
| metrics.get_maps(nc), | |
| t, | |
| ) | |
| def parse_opt(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--data", | |
| type=str, | |
| default=ROOT / "data/coco128-seg.yaml", | |
| help="dataset.yaml path", | |
| ) | |
| parser.add_argument( | |
| "--weights", | |
| nargs="+", | |
| type=str, | |
| default=ROOT / "yolov5s-seg.pt", | |
| help="model path(s)", | |
| ) | |
| parser.add_argument( | |
| "--batch-size", type=int, default=32, help="batch size" | |
| ) | |
| parser.add_argument( | |
| "--imgsz", | |
| "--img", | |
| "--img-size", | |
| type=int, | |
| default=640, | |
| help="inference size (pixels)", | |
| ) | |
| parser.add_argument( | |
| "--conf-thres", type=float, default=0.001, help="confidence threshold" | |
| ) | |
| parser.add_argument( | |
| "--iou-thres", type=float, default=0.6, help="NMS IoU threshold" | |
| ) | |
| parser.add_argument( | |
| "--max-det", type=int, default=300, help="maximum detections per image" | |
| ) | |
| parser.add_argument( | |
| "--task", default="val", help="train, val, test, speed or study" | |
| ) | |
| parser.add_argument( | |
| "--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu" | |
| ) | |
| parser.add_argument( | |
| "--workers", | |
| type=int, | |
| default=8, | |
| help="max dataloader workers (per RANK in DDP mode)", | |
| ) | |
| parser.add_argument( | |
| "--single-cls", | |
| action="store_true", | |
| help="treat as single-class dataset", | |
| ) | |
| parser.add_argument( | |
| "--augment", action="store_true", help="augmented inference" | |
| ) | |
| parser.add_argument( | |
| "--verbose", action="store_true", help="report mAP by class" | |
| ) | |
| parser.add_argument( | |
| "--save-txt", action="store_true", help="save results to *.txt" | |
| ) | |
| parser.add_argument( | |
| "--save-hybrid", | |
| action="store_true", | |
| help="save label+prediction hybrid results to *.txt", | |
| ) | |
| parser.add_argument( | |
| "--save-conf", | |
| action="store_true", | |
| help="save confidences in --save-txt labels", | |
| ) | |
| parser.add_argument( | |
| "--save-json", | |
| action="store_true", | |
| help="save a COCO-JSON results file", | |
| ) | |
| parser.add_argument( | |
| "--project", | |
| default=ROOT / "runs/val-seg", | |
| help="save results to project/name", | |
| ) | |
| parser.add_argument("--name", default="exp", help="save to project/name") | |
| parser.add_argument( | |
| "--exist-ok", | |
| action="store_true", | |
| help="existing project/name ok, do not increment", | |
| ) | |
| parser.add_argument( | |
| "--half", action="store_true", help="use FP16 half-precision inference" | |
| ) | |
| parser.add_argument( | |
| "--dnn", action="store_true", help="use OpenCV DNN for ONNX inference" | |
| ) | |
| opt = parser.parse_args() | |
| opt.data = check_yaml(opt.data) # check YAML | |
| # opt.save_json |= opt.data.endswith('coco.yaml') | |
| opt.save_txt |= opt.save_hybrid | |
| print_args(vars(opt)) | |
| return opt | |
| def main(opt): | |
| check_requirements( | |
| requirements=ROOT / "requirements.txt", exclude=("tensorboard", "thop") | |
| ) | |
| if opt.task in ("train", "val", "test"): # run normally | |
| if ( | |
| opt.conf_thres > 0.001 | |
| ): # https://github.com/ultralytics/yolov5/issues/1466 | |
| LOGGER.warning( | |
| f"WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results" | |
| ) | |
| if opt.save_hybrid: | |
| LOGGER.warning( | |
| "WARNING ⚠️ --save-hybrid returns high mAP from hybrid labels, not from predictions alone" | |
| ) | |
| run(**vars(opt)) | |
| else: | |
| weights = ( | |
| opt.weights if isinstance(opt.weights, list) else [opt.weights] | |
| ) | |
| opt.half = ( | |
| torch.cuda.is_available() and opt.device != "cpu" | |
| ) # FP16 for fastest results | |
| if opt.task == "speed": # speed benchmarks | |
| # python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt... | |
| opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False | |
| for opt.weights in weights: | |
| run(**vars(opt), plots=False) | |
| elif opt.task == "study": # speed vs mAP benchmarks | |
| # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt... | |
| for opt.weights in weights: | |
| f = f"study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt" # filename to save to | |
| x, y = ( | |
| list(range(256, 1536 + 128, 128)), | |
| [], | |
| ) # x axis (image sizes), y axis | |
| for opt.imgsz in x: # img-size | |
| LOGGER.info(f"\nRunning {f} --imgsz {opt.imgsz}...") | |
| r, _, t = run(**vars(opt), plots=False) | |
| y.append(r + t) # results and times | |
| np.savetxt(f, y, fmt="%10.4g") # save | |
| os.system("zip -r study.zip study_*.txt") | |
| plot_val_study(x=x) # plot | |
| else: | |
| raise NotImplementedError( | |
| f'--task {opt.task} not in ("train", "val", "test", "speed", "study")' | |
| ) | |
| if __name__ == "__main__": | |
| opt = parse_opt() | |
| main(opt) | |