Spaces:
Runtime error
Runtime error
| # YOLOv5 🚀 by Ultralytics, GPL-3.0 license | |
| """ | |
| Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc. | |
| Usage - sources: | |
| $ python detect.py --weights yolov5s.pt --source 0 # webcam | |
| img.jpg # image | |
| vid.mp4 # video | |
| screen # screenshot | |
| path/ # directory | |
| list.txt # list of images | |
| list.streams # list of streams | |
| 'path/*.jpg' # glob | |
| 'https://youtu.be/Zgi9g1ksQHc' # YouTube | |
| 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream | |
| Usage - formats: | |
| $ python detect.py --weights yolov5s.pt # PyTorch | |
| yolov5s.torchscript # TorchScript | |
| yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn | |
| yolov5s_openvino_model # OpenVINO | |
| yolov5s.engine # TensorRT | |
| yolov5s.mlmodel # CoreML (macOS-only) | |
| yolov5s_saved_model # TensorFlow SavedModel | |
| yolov5s.pb # TensorFlow GraphDef | |
| yolov5s.tflite # TensorFlow Lite | |
| yolov5s_edgetpu.tflite # TensorFlow Edge TPU | |
| yolov5s_paddle_model # PaddlePaddle | |
| """ | |
| import argparse | |
| import os | |
| import platform | |
| import sys | |
| from pathlib import Path | |
| import torch | |
| FILE = Path(__file__).resolve() | |
| ROOT = FILE.parents[0] # YOLOv5 root directory | |
| if str(ROOT) not in sys.path: | |
| sys.path.append(str(ROOT)) # add ROOT to PATH | |
| ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative | |
| from models.common import DetectMultiBackend | |
| from utils.dataloaders import ( | |
| IMG_FORMATS, | |
| VID_FORMATS, | |
| LoadImages, | |
| LoadScreenshots, | |
| LoadStreams, | |
| ) | |
| from utils.general import ( | |
| LOGGER, | |
| Profile, | |
| check_file, | |
| check_img_size, | |
| check_imshow, | |
| check_requirements, | |
| colorstr, | |
| cv2, | |
| increment_path, | |
| non_max_suppression, | |
| print_args, | |
| scale_boxes, | |
| strip_optimizer, | |
| xyxy2xywh, | |
| ) | |
| from utils.plots import Annotator, colors, save_one_box | |
| from utils.torch_utils import select_device, smart_inference_mode | |
| def run( | |
| weights=ROOT / "yolov5s.pt", # model path or triton URL | |
| source=ROOT / "data/images", # file/dir/URL/glob/screen/0(webcam) | |
| data=ROOT / "data/coco128.yaml", # dataset.yaml path | |
| imgsz=(640, 640), # inference size (height, width) | |
| conf_thres=0.25, # confidence threshold | |
| iou_thres=0.45, # NMS IOU threshold | |
| max_det=1000, # maximum detections per image | |
| device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu | |
| view_img=False, # show results | |
| save_txt=False, # save results to *.txt | |
| save_conf=False, # save confidences in --save-txt labels | |
| save_crop=False, # save cropped prediction boxes | |
| nosave=False, # do not save images/videos | |
| classes=None, # filter by class: --class 0, or --class 0 2 3 | |
| agnostic_nms=False, # class-agnostic NMS | |
| augment=False, # augmented inference | |
| visualize=False, # visualize features | |
| update=False, # update all models | |
| project=ROOT / "runs/detect", # save results to project/name | |
| name="exp", # save results to project/name | |
| exist_ok=False, # existing project/name ok, do not increment | |
| line_thickness=3, # bounding box thickness (pixels) | |
| hide_labels=False, # hide labels | |
| hide_conf=False, # hide confidences | |
| half=False, # use FP16 half-precision inference | |
| dnn=False, # use OpenCV DNN for ONNX inference | |
| vid_stride=1, # video frame-rate stride | |
| ): | |
| source = str(source) | |
| save_img = not nosave and not source.endswith( | |
| ".txt" | |
| ) # save inference images | |
| is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) | |
| is_url = source.lower().startswith( | |
| ("rtsp://", "rtmp://", "http://", "https://") | |
| ) | |
| webcam = ( | |
| source.isnumeric() | |
| or source.endswith(".streams") | |
| or (is_url and not is_file) | |
| ) | |
| screenshot = source.lower().startswith("screen") | |
| if is_url and is_file: | |
| source = check_file(source) # download | |
| # Directories | |
| save_dir = increment_path( | |
| Path(project) / name, exist_ok=exist_ok | |
| ) # increment run | |
| (save_dir / "labels" if save_txt else save_dir).mkdir( | |
| parents=True, exist_ok=True | |
| ) # make dir | |
| # Load model | |
| device = select_device(device) | |
| model = DetectMultiBackend( | |
| weights, device=device, dnn=dnn, data=data, fp16=half | |
| ) | |
| stride, names, pt = model.stride, model.names, model.pt | |
| imgsz = check_img_size(imgsz, s=stride) # check image size | |
| # Dataloader | |
| bs = 1 # batch_size | |
| if webcam: | |
| view_img = check_imshow(warn=True) | |
| dataset = LoadStreams( | |
| source, | |
| img_size=imgsz, | |
| stride=stride, | |
| auto=pt, | |
| vid_stride=vid_stride, | |
| ) | |
| bs = len(dataset) | |
| elif screenshot: | |
| dataset = LoadScreenshots( | |
| source, img_size=imgsz, stride=stride, auto=pt | |
| ) | |
| else: | |
| dataset = LoadImages( | |
| source, | |
| img_size=imgsz, | |
| stride=stride, | |
| auto=pt, | |
| vid_stride=vid_stride, | |
| ) | |
| vid_path, vid_writer = [None] * bs, [None] * bs | |
| # Run inference | |
| model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup | |
| seen, windows, dt = 0, [], (Profile(), Profile(), Profile()) | |
| for path, im, im0s, vid_cap, s in dataset: | |
| with dt[0]: | |
| im = torch.from_numpy(im).to(model.device) | |
| im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 | |
| im /= 255 # 0 - 255 to 0.0 - 1.0 | |
| if len(im.shape) == 3: | |
| im = im[None] # expand for batch dim | |
| # Inference | |
| with dt[1]: | |
| visualize = ( | |
| increment_path(save_dir / Path(path).stem, mkdir=True) | |
| if visualize | |
| else False | |
| ) | |
| pred = model(im, augment=augment, visualize=visualize) | |
| # NMS | |
| with dt[2]: | |
| pred = non_max_suppression( | |
| pred, | |
| conf_thres, | |
| iou_thres, | |
| classes, | |
| agnostic_nms, | |
| max_det=max_det, | |
| ) | |
| # Second-stage classifier (optional) | |
| # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s) | |
| # Process predictions | |
| for i, det in enumerate(pred): # per image | |
| seen += 1 | |
| if webcam: # batch_size >= 1 | |
| p, im0, frame = path[i], im0s[i].copy(), dataset.count | |
| s += f"{i}: " | |
| else: | |
| p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0) | |
| p = Path(p) # to Path | |
| save_path = str(save_dir / p.name) # im.jpg | |
| txt_path = str(save_dir / "labels" / p.stem) + ( | |
| "" if dataset.mode == "image" else f"_{frame}" | |
| ) # im.txt | |
| s += "%gx%g " % im.shape[2:] # print string | |
| gn = torch.tensor(im0.shape)[ | |
| [1, 0, 1, 0] | |
| ] # normalization gain whwh | |
| imc = im0.copy() if save_crop else im0 # for save_crop | |
| annotator = Annotator( | |
| im0, line_width=line_thickness, example=str(names) | |
| ) | |
| results = [] | |
| if len(det): | |
| # Rescale boxes from img_size to im0 size | |
| det[:, :4] = scale_boxes( | |
| im.shape[2:], det[:, :4], im0.shape | |
| ).round() | |
| results.append((path, det)) | |
| return results | |