Spaces:
Runtime error
Runtime error
# YOLOv5 π by Ultralytics, GPL-3.0 license | |
""" | |
Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc. | |
Usage - sources: | |
$ python detect.py --weights yolov5s.pt --source 0 # webcam | |
img.jpg # image | |
vid.mp4 # video | |
screen # screenshot | |
path/ # directory | |
list.txt # list of images | |
list.streams # list of streams | |
'path/*.jpg' # glob | |
'https://youtu.be/Zgi9g1ksQHc' # YouTube | |
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream | |
Usage - formats: | |
$ python detect.py --weights yolov5s.pt # PyTorch | |
yolov5s.torchscript # TorchScript | |
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn | |
yolov5s_openvino_model # OpenVINO | |
yolov5s.engine # TensorRT | |
yolov5s.mlmodel # CoreML (macOS-only) | |
yolov5s_saved_model # TensorFlow SavedModel | |
yolov5s.pb # TensorFlow GraphDef | |
yolov5s.tflite # TensorFlow Lite | |
yolov5s_edgetpu.tflite # TensorFlow Edge TPU | |
yolov5s_paddle_model # PaddlePaddle | |
""" | |
import argparse | |
import os | |
import platform | |
import sys | |
from pathlib import Path | |
import torch | |
FILE = Path(__file__).resolve() | |
ROOT = FILE.parents[0] # YOLOv5 root directory | |
if str(ROOT) not in sys.path: | |
sys.path.append(str(ROOT)) # add ROOT to PATH | |
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative | |
from models.common import DetectMultiBackend | |
from utils.dataloaders import ( | |
IMG_FORMATS, | |
VID_FORMATS, | |
LoadImages, | |
LoadScreenshots, | |
LoadStreams, | |
) | |
from utils.general import ( | |
LOGGER, | |
Profile, | |
check_file, | |
check_img_size, | |
check_imshow, | |
check_requirements, | |
colorstr, | |
cv2, | |
increment_path, | |
non_max_suppression, | |
print_args, | |
scale_boxes, | |
strip_optimizer, | |
xyxy2xywh, | |
) | |
from utils.plots import Annotator, colors, save_one_box | |
from utils.torch_utils import select_device, smart_inference_mode | |
def run( | |
weights=ROOT / "yolov5s.pt", # model path or triton URL | |
source=ROOT / "data/images", # file/dir/URL/glob/screen/0(webcam) | |
data=ROOT / "data/coco128.yaml", # dataset.yaml path | |
imgsz=(640, 640), # inference size (height, width) | |
conf_thres=0.25, # confidence threshold | |
iou_thres=0.45, # NMS IOU threshold | |
max_det=1000, # maximum detections per image | |
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu | |
view_img=False, # show results | |
save_txt=False, # save results to *.txt | |
save_conf=False, # save confidences in --save-txt labels | |
save_crop=False, # save cropped prediction boxes | |
nosave=False, # do not save images/videos | |
classes=None, # filter by class: --class 0, or --class 0 2 3 | |
agnostic_nms=False, # class-agnostic NMS | |
augment=False, # augmented inference | |
visualize=False, # visualize features | |
update=False, # update all models | |
project=ROOT / "runs/detect", # save results to project/name | |
name="exp", # save results to project/name | |
exist_ok=False, # existing project/name ok, do not increment | |
line_thickness=3, # bounding box thickness (pixels) | |
hide_labels=False, # hide labels | |
hide_conf=False, # hide confidences | |
half=False, # use FP16 half-precision inference | |
dnn=False, # use OpenCV DNN for ONNX inference | |
vid_stride=1, # video frame-rate stride | |
): | |
source = str(source) | |
save_img = not nosave and not source.endswith( | |
".txt" | |
) # save inference images | |
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) | |
is_url = source.lower().startswith( | |
("rtsp://", "rtmp://", "http://", "https://") | |
) | |
webcam = ( | |
source.isnumeric() | |
or source.endswith(".streams") | |
or (is_url and not is_file) | |
) | |
screenshot = source.lower().startswith("screen") | |
if is_url and is_file: | |
source = check_file(source) # download | |
# Directories | |
save_dir = increment_path( | |
Path(project) / name, exist_ok=exist_ok | |
) # increment run | |
(save_dir / "labels" if save_txt else save_dir).mkdir( | |
parents=True, exist_ok=True | |
) # make dir | |
# Load model | |
device = select_device(device) | |
model = DetectMultiBackend( | |
weights, device=device, dnn=dnn, data=data, fp16=half | |
) | |
stride, names, pt = model.stride, model.names, model.pt | |
imgsz = check_img_size(imgsz, s=stride) # check image size | |
# Dataloader | |
bs = 1 # batch_size | |
if webcam: | |
view_img = check_imshow(warn=True) | |
dataset = LoadStreams( | |
source, | |
img_size=imgsz, | |
stride=stride, | |
auto=pt, | |
vid_stride=vid_stride, | |
) | |
bs = len(dataset) | |
elif screenshot: | |
dataset = LoadScreenshots( | |
source, img_size=imgsz, stride=stride, auto=pt | |
) | |
else: | |
dataset = LoadImages( | |
source, | |
img_size=imgsz, | |
stride=stride, | |
auto=pt, | |
vid_stride=vid_stride, | |
) | |
vid_path, vid_writer = [None] * bs, [None] * bs | |
# Run inference | |
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup | |
seen, windows, dt = 0, [], (Profile(), Profile(), Profile()) | |
for path, im, im0s, vid_cap, s in dataset: | |
with dt[0]: | |
im = torch.from_numpy(im).to(model.device) | |
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 | |
im /= 255 # 0 - 255 to 0.0 - 1.0 | |
if len(im.shape) == 3: | |
im = im[None] # expand for batch dim | |
# Inference | |
with dt[1]: | |
visualize = ( | |
increment_path(save_dir / Path(path).stem, mkdir=True) | |
if visualize | |
else False | |
) | |
pred = model(im, augment=augment, visualize=visualize) | |
# NMS | |
with dt[2]: | |
pred = non_max_suppression( | |
pred, | |
conf_thres, | |
iou_thres, | |
classes, | |
agnostic_nms, | |
max_det=max_det, | |
) | |
# Second-stage classifier (optional) | |
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s) | |
# Process predictions | |
for i, det in enumerate(pred): # per image | |
seen += 1 | |
if webcam: # batch_size >= 1 | |
p, im0, frame = path[i], im0s[i].copy(), dataset.count | |
s += f"{i}: " | |
else: | |
p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0) | |
p = Path(p) # to Path | |
save_path = str(save_dir / p.name) # im.jpg | |
txt_path = str(save_dir / "labels" / p.stem) + ( | |
"" if dataset.mode == "image" else f"_{frame}" | |
) # im.txt | |
s += "%gx%g " % im.shape[2:] # print string | |
gn = torch.tensor(im0.shape)[ | |
[1, 0, 1, 0] | |
] # normalization gain whwh | |
imc = im0.copy() if save_crop else im0 # for save_crop | |
annotator = Annotator( | |
im0, line_width=line_thickness, example=str(names) | |
) | |
results = [] | |
if len(det): | |
# Rescale boxes from img_size to im0 size | |
det[:, :4] = scale_boxes( | |
im.shape[2:], det[:, :4], im0.shape | |
).round() | |
results.append((path, det)) | |
return results | |