Abhilashvj's picture
Upload 250 files
5b2fcab
raw
history blame
8.63 kB
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Validate a trained YOLOv5 classification model on a classification dataset
Usage:
$ bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images)
$ python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate ImageNet
Usage - formats:
$ python classify/val.py --weights yolov5s-cls.pt # PyTorch
yolov5s-cls.torchscript # TorchScript
yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s-cls_openvino_model # OpenVINO
yolov5s-cls.engine # TensorRT
yolov5s-cls.mlmodel # CoreML (macOS-only)
yolov5s-cls_saved_model # TensorFlow SavedModel
yolov5s-cls.pb # TensorFlow GraphDef
yolov5s-cls.tflite # TensorFlow Lite
yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU
yolov5s-cls_paddle_model # PaddlePaddle
"""
import argparse
import os
import sys
from pathlib import Path
import torch
from tqdm import tqdm
FILE = Path(__file__).resolve()
ROOT = FILE.parents[1] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.common import DetectMultiBackend
from utils.dataloaders import create_classification_dataloader
from utils.general import (
LOGGER,
TQDM_BAR_FORMAT,
Profile,
check_img_size,
check_requirements,
colorstr,
increment_path,
print_args,
)
from utils.torch_utils import select_device, smart_inference_mode
@smart_inference_mode()
def run(
data=ROOT / "../datasets/mnist", # dataset dir
weights=ROOT / "yolov5s-cls.pt", # model.pt path(s)
batch_size=128, # batch size
imgsz=224, # inference size (pixels)
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
workers=8, # max dataloader workers (per RANK in DDP mode)
verbose=False, # verbose output
project=ROOT / "runs/val-cls", # save to project/name
name="exp", # save to project/name
exist_ok=False, # existing project/name ok, do not increment
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
model=None,
dataloader=None,
criterion=None,
pbar=None,
):
# Initialize/load model and set device
training = model is not None
if training: # called by train.py
device, pt, jit, engine = (
next(model.parameters()).device,
True,
False,
False,
) # get model device, PyTorch model
half &= device.type != "cpu" # half precision only supported on CUDA
model.half() if half else model.float()
else: # called directly
device = select_device(device, batch_size=batch_size)
# Directories
save_dir = increment_path(
Path(project) / name, exist_ok=exist_ok
) # increment run
save_dir.mkdir(parents=True, exist_ok=True) # make dir
# Load model
model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half)
stride, pt, jit, engine = (
model.stride,
model.pt,
model.jit,
model.engine,
)
imgsz = check_img_size(imgsz, s=stride) # check image size
half = model.fp16 # FP16 supported on limited backends with CUDA
if engine:
batch_size = model.batch_size
else:
device = model.device
if not (pt or jit):
batch_size = 1 # export.py models default to batch-size 1
LOGGER.info(
f"Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models"
)
# Dataloader
data = Path(data)
test_dir = (
data / "test" if (data / "test").exists() else data / "val"
) # data/test or data/val
dataloader = create_classification_dataloader(
path=test_dir,
imgsz=imgsz,
batch_size=batch_size,
augment=False,
rank=-1,
workers=workers,
)
model.eval()
pred, targets, loss, dt = [], [], 0, (Profile(), Profile(), Profile())
n = len(dataloader) # number of batches
action = (
"validating" if dataloader.dataset.root.stem == "val" else "testing"
)
desc = f"{pbar.desc[:-36]}{action:>36}" if pbar else f"{action}"
bar = tqdm(
dataloader,
desc,
n,
not training,
bar_format=TQDM_BAR_FORMAT,
position=0,
)
with torch.cuda.amp.autocast(enabled=device.type != "cpu"):
for images, labels in bar:
with dt[0]:
images, labels = images.to(
device, non_blocking=True
), labels.to(device)
with dt[1]:
y = model(images)
with dt[2]:
pred.append(y.argsort(1, descending=True)[:, :5])
targets.append(labels)
if criterion:
loss += criterion(y, labels)
loss /= n
pred, targets = torch.cat(pred), torch.cat(targets)
correct = (targets[:, None] == pred).float()
acc = torch.stack(
(correct[:, 0], correct.max(1).values), dim=1
) # (top1, top5) accuracy
top1, top5 = acc.mean(0).tolist()
if pbar:
pbar.desc = f"{pbar.desc[:-36]}{loss:>12.3g}{top1:>12.3g}{top5:>12.3g}"
if verbose: # all classes
LOGGER.info(
f"{'Class':>24}{'Images':>12}{'top1_acc':>12}{'top5_acc':>12}"
)
LOGGER.info(
f"{'all':>24}{targets.shape[0]:>12}{top1:>12.3g}{top5:>12.3g}"
)
for i, c in model.names.items():
aci = acc[targets == i]
top1i, top5i = aci.mean(0).tolist()
LOGGER.info(
f"{c:>24}{aci.shape[0]:>12}{top1i:>12.3g}{top5i:>12.3g}"
)
# Print results
t = tuple(
x.t / len(dataloader.dataset.samples) * 1e3 for x in dt
) # speeds per image
shape = (1, 3, imgsz, imgsz)
LOGGER.info(
f"Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}"
% t
)
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
return top1, top5, loss
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument(
"--data",
type=str,
default=ROOT / "../datasets/mnist",
help="dataset path",
)
parser.add_argument(
"--weights",
nargs="+",
type=str,
default=ROOT / "yolov5s-cls.pt",
help="model.pt path(s)",
)
parser.add_argument(
"--batch-size", type=int, default=128, help="batch size"
)
parser.add_argument(
"--imgsz",
"--img",
"--img-size",
type=int,
default=224,
help="inference size (pixels)",
)
parser.add_argument(
"--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu"
)
parser.add_argument(
"--workers",
type=int,
default=8,
help="max dataloader workers (per RANK in DDP mode)",
)
parser.add_argument(
"--verbose", nargs="?", const=True, default=True, help="verbose output"
)
parser.add_argument(
"--project", default=ROOT / "runs/val-cls", help="save to project/name"
)
parser.add_argument("--name", default="exp", help="save to project/name")
parser.add_argument(
"--exist-ok",
action="store_true",
help="existing project/name ok, do not increment",
)
parser.add_argument(
"--half", action="store_true", help="use FP16 half-precision inference"
)
parser.add_argument(
"--dnn", action="store_true", help="use OpenCV DNN for ONNX inference"
)
opt = parser.parse_args()
print_args(vars(opt))
return opt
def main(opt):
check_requirements(exclude=("tensorboard", "thop"))
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)