Spaces:
Runtime error
Runtime error
import argparse | |
import json | |
import logging | |
import os | |
import sys | |
from pathlib import Path | |
import comet_ml | |
logger = logging.getLogger(__name__) | |
FILE = Path(__file__).resolve() | |
ROOT = FILE.parents[3] # YOLOv5 root directory | |
if str(ROOT) not in sys.path: | |
sys.path.append(str(ROOT)) # add ROOT to PATH | |
from train import train | |
from utils.callbacks import Callbacks | |
from utils.general import increment_path | |
from utils.torch_utils import select_device | |
# Project Configuration | |
config = comet_ml.config.get_config() | |
COMET_PROJECT_NAME = config.get_string( | |
os.getenv("COMET_PROJECT_NAME"), "comet.project_name", default="yolov5" | |
) | |
def get_args(known=False): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--weights", | |
type=str, | |
default=ROOT / "yolov5s.pt", | |
help="initial weights path", | |
) | |
parser.add_argument("--cfg", type=str, default="", help="model.yaml path") | |
parser.add_argument( | |
"--data", | |
type=str, | |
default=ROOT / "data/coco128.yaml", | |
help="dataset.yaml path", | |
) | |
parser.add_argument( | |
"--hyp", | |
type=str, | |
default=ROOT / "data/hyps/hyp.scratch-low.yaml", | |
help="hyperparameters path", | |
) | |
parser.add_argument( | |
"--epochs", type=int, default=300, help="total training epochs" | |
) | |
parser.add_argument( | |
"--batch-size", | |
type=int, | |
default=16, | |
help="total batch size for all GPUs, -1 for autobatch", | |
) | |
parser.add_argument( | |
"--imgsz", | |
"--img", | |
"--img-size", | |
type=int, | |
default=640, | |
help="train, val image size (pixels)", | |
) | |
parser.add_argument( | |
"--rect", action="store_true", help="rectangular training" | |
) | |
parser.add_argument( | |
"--resume", | |
nargs="?", | |
const=True, | |
default=False, | |
help="resume most recent training", | |
) | |
parser.add_argument( | |
"--nosave", action="store_true", help="only save final checkpoint" | |
) | |
parser.add_argument( | |
"--noval", action="store_true", help="only validate final epoch" | |
) | |
parser.add_argument( | |
"--noautoanchor", action="store_true", help="disable AutoAnchor" | |
) | |
parser.add_argument( | |
"--noplots", action="store_true", help="save no plot files" | |
) | |
parser.add_argument( | |
"--evolve", | |
type=int, | |
nargs="?", | |
const=300, | |
help="evolve hyperparameters for x generations", | |
) | |
parser.add_argument("--bucket", type=str, default="", help="gsutil bucket") | |
parser.add_argument( | |
"--cache", | |
type=str, | |
nargs="?", | |
const="ram", | |
help='--cache images in "ram" (default) or "disk"', | |
) | |
parser.add_argument( | |
"--image-weights", | |
action="store_true", | |
help="use weighted image selection for training", | |
) | |
parser.add_argument( | |
"--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu" | |
) | |
parser.add_argument( | |
"--multi-scale", action="store_true", help="vary img-size +/- 50%%" | |
) | |
parser.add_argument( | |
"--single-cls", | |
action="store_true", | |
help="train multi-class data as single-class", | |
) | |
parser.add_argument( | |
"--optimizer", | |
type=str, | |
choices=["SGD", "Adam", "AdamW"], | |
default="SGD", | |
help="optimizer", | |
) | |
parser.add_argument( | |
"--sync-bn", | |
action="store_true", | |
help="use SyncBatchNorm, only available in DDP mode", | |
) | |
parser.add_argument( | |
"--workers", | |
type=int, | |
default=8, | |
help="max dataloader workers (per RANK in DDP mode)", | |
) | |
parser.add_argument( | |
"--project", default=ROOT / "runs/train", help="save to project/name" | |
) | |
parser.add_argument("--name", default="exp", help="save to project/name") | |
parser.add_argument( | |
"--exist-ok", | |
action="store_true", | |
help="existing project/name ok, do not increment", | |
) | |
parser.add_argument("--quad", action="store_true", help="quad dataloader") | |
parser.add_argument( | |
"--cos-lr", action="store_true", help="cosine LR scheduler" | |
) | |
parser.add_argument( | |
"--label-smoothing", | |
type=float, | |
default=0.0, | |
help="Label smoothing epsilon", | |
) | |
parser.add_argument( | |
"--patience", | |
type=int, | |
default=100, | |
help="EarlyStopping patience (epochs without improvement)", | |
) | |
parser.add_argument( | |
"--freeze", | |
nargs="+", | |
type=int, | |
default=[0], | |
help="Freeze layers: backbone=10, first3=0 1 2", | |
) | |
parser.add_argument( | |
"--save-period", | |
type=int, | |
default=-1, | |
help="Save checkpoint every x epochs (disabled if < 1)", | |
) | |
parser.add_argument( | |
"--seed", type=int, default=0, help="Global training seed" | |
) | |
parser.add_argument( | |
"--local_rank", | |
type=int, | |
default=-1, | |
help="Automatic DDP Multi-GPU argument, do not modify", | |
) | |
# Weights & Biases arguments | |
parser.add_argument("--entity", default=None, help="W&B: Entity") | |
parser.add_argument( | |
"--upload_dataset", | |
nargs="?", | |
const=True, | |
default=False, | |
help='W&B: Upload data, "val" option', | |
) | |
parser.add_argument( | |
"--bbox_interval", | |
type=int, | |
default=-1, | |
help="W&B: Set bounding-box image logging interval", | |
) | |
parser.add_argument( | |
"--artifact_alias", | |
type=str, | |
default="latest", | |
help="W&B: Version of dataset artifact to use", | |
) | |
# Comet Arguments | |
parser.add_argument( | |
"--comet_optimizer_config", | |
type=str, | |
help="Comet: Path to a Comet Optimizer Config File.", | |
) | |
parser.add_argument( | |
"--comet_optimizer_id", | |
type=str, | |
help="Comet: ID of the Comet Optimizer sweep.", | |
) | |
parser.add_argument( | |
"--comet_optimizer_objective", | |
type=str, | |
help="Comet: Set to 'minimize' or 'maximize'.", | |
) | |
parser.add_argument( | |
"--comet_optimizer_metric", type=str, help="Comet: Metric to Optimize." | |
) | |
parser.add_argument( | |
"--comet_optimizer_workers", | |
type=int, | |
default=1, | |
help="Comet: Number of Parallel Workers to use with the Comet Optimizer.", | |
) | |
return parser.parse_known_args()[0] if known else parser.parse_args() | |
def run(parameters, opt): | |
hyp_dict = { | |
k: v | |
for k, v in parameters.items() | |
if k not in ["epochs", "batch_size"] | |
} | |
opt.save_dir = str( | |
increment_path( | |
Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve | |
) | |
) | |
opt.batch_size = parameters.get("batch_size") | |
opt.epochs = parameters.get("epochs") | |
device = select_device(opt.device, batch_size=opt.batch_size) | |
train(hyp_dict, opt, device, callbacks=Callbacks()) | |
if __name__ == "__main__": | |
opt = get_args(known=True) | |
opt.weights = str(opt.weights) | |
opt.cfg = str(opt.cfg) | |
opt.data = str(opt.data) | |
opt.project = str(opt.project) | |
optimizer_id = os.getenv("COMET_OPTIMIZER_ID") | |
if optimizer_id is None: | |
with open(opt.comet_optimizer_config) as f: | |
optimizer_config = json.load(f) | |
optimizer = comet_ml.Optimizer(optimizer_config) | |
else: | |
optimizer = comet_ml.Optimizer(optimizer_id) | |
opt.comet_optimizer_id = optimizer.id | |
status = optimizer.status() | |
opt.comet_optimizer_objective = status["spec"]["objective"] | |
opt.comet_optimizer_metric = status["spec"]["metric"] | |
logger.info("COMET INFO: Starting Hyperparameter Sweep") | |
for parameter in optimizer.get_parameters(): | |
run(parameter["parameters"], opt) | |