Spaces:
Runtime error
Runtime error
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license | |
""" | |
Model validation metrics | |
""" | |
import math | |
import warnings | |
from pathlib import Path | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import torch | |
from utils import TryExcept, threaded | |
def fitness(x): | |
# Model fitness as a weighted combination of metrics | |
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95] | |
return (x[:, :4] * w).sum(1) | |
def smooth(y, f=0.05): | |
# Box filter of fraction f | |
nf = ( | |
round(len(y) * f * 2) // 2 + 1 | |
) # number of filter elements (must be odd) | |
p = np.ones(nf // 2) # ones padding | |
yp = np.concatenate((p * y[0], y, p * y[-1]), 0) # y padded | |
return np.convolve(yp, np.ones(nf) / nf, mode="valid") # y-smoothed | |
def ap_per_class( | |
tp, | |
conf, | |
pred_cls, | |
target_cls, | |
plot=False, | |
save_dir=".", | |
names=(), | |
eps=1e-16, | |
prefix="", | |
): | |
"""Compute the average precision, given the recall and precision curves. | |
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics. | |
# Arguments | |
tp: True positives (nparray, nx1 or nx10). | |
conf: Objectness value from 0-1 (nparray). | |
pred_cls: Predicted object classes (nparray). | |
target_cls: True object classes (nparray). | |
plot: Plot precision-recall curve at mAP@0.5 | |
save_dir: Plot save directory | |
# Returns | |
The average precision as computed in py-faster-rcnn. | |
""" | |
# Sort by objectness | |
i = np.argsort(-conf) | |
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] | |
# Find unique classes | |
unique_classes, nt = np.unique(target_cls, return_counts=True) | |
nc = unique_classes.shape[0] # number of classes, number of detections | |
# Create Precision-Recall curve and compute AP for each class | |
px, py = np.linspace(0, 1, 1000), [] # for plotting | |
ap, p, r = ( | |
np.zeros((nc, tp.shape[1])), | |
np.zeros((nc, 1000)), | |
np.zeros((nc, 1000)), | |
) | |
for ci, c in enumerate(unique_classes): | |
i = pred_cls == c | |
n_l = nt[ci] # number of labels | |
n_p = i.sum() # number of predictions | |
if n_p == 0 or n_l == 0: | |
continue | |
# Accumulate FPs and TPs | |
fpc = (1 - tp[i]).cumsum(0) | |
tpc = tp[i].cumsum(0) | |
# Recall | |
recall = tpc / (n_l + eps) # recall curve | |
r[ci] = np.interp( | |
-px, -conf[i], recall[:, 0], left=0 | |
) # negative x, xp because xp decreases | |
# Precision | |
precision = tpc / (tpc + fpc) # precision curve | |
p[ci] = np.interp( | |
-px, -conf[i], precision[:, 0], left=1 | |
) # p at pr_score | |
# AP from recall-precision curve | |
for j in range(tp.shape[1]): | |
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j]) | |
if plot and j == 0: | |
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5 | |
# Compute F1 (harmonic mean of precision and recall) | |
f1 = 2 * p * r / (p + r + eps) | |
names = [ | |
v for k, v in names.items() if k in unique_classes | |
] # list: only classes that have data | |
names = dict(enumerate(names)) # to dict | |
if plot: | |
plot_pr_curve( | |
px, py, ap, Path(save_dir) / f"{prefix}PR_curve.png", names | |
) | |
plot_mc_curve( | |
px, | |
f1, | |
Path(save_dir) / f"{prefix}F1_curve.png", | |
names, | |
ylabel="F1", | |
) | |
plot_mc_curve( | |
px, | |
p, | |
Path(save_dir) / f"{prefix}P_curve.png", | |
names, | |
ylabel="Precision", | |
) | |
plot_mc_curve( | |
px, | |
r, | |
Path(save_dir) / f"{prefix}R_curve.png", | |
names, | |
ylabel="Recall", | |
) | |
i = smooth(f1.mean(0), 0.1).argmax() # max F1 index | |
p, r, f1 = p[:, i], r[:, i], f1[:, i] | |
tp = (r * nt).round() # true positives | |
fp = (tp / (p + eps) - tp).round() # false positives | |
return tp, fp, p, r, f1, ap, unique_classes.astype(int) | |
def compute_ap(recall, precision): | |
"""Compute the average precision, given the recall and precision curves | |
# Arguments | |
recall: The recall curve (list) | |
precision: The precision curve (list) | |
# Returns | |
Average precision, precision curve, recall curve | |
""" | |
# Append sentinel values to beginning and end | |
mrec = np.concatenate(([0.0], recall, [1.0])) | |
mpre = np.concatenate(([1.0], precision, [0.0])) | |
# Compute the precision envelope | |
mpre = np.flip(np.maximum.accumulate(np.flip(mpre))) | |
# Integrate area under curve | |
method = "interp" # methods: 'continuous', 'interp' | |
if method == "interp": | |
x = np.linspace(0, 1, 101) # 101-point interp (COCO) | |
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate | |
else: # 'continuous' | |
i = np.where(mrec[1:] != mrec[:-1])[ | |
0 | |
] # points where x axis (recall) changes | |
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve | |
return ap, mpre, mrec | |
class ConfusionMatrix: | |
# Updated version of https://github.com/kaanakan/object_detection_confusion_matrix | |
def __init__(self, nc, conf=0.25, iou_thres=0.45): | |
self.matrix = np.zeros((nc + 1, nc + 1)) | |
self.nc = nc # number of classes | |
self.conf = conf | |
self.iou_thres = iou_thres | |
def process_batch(self, detections, labels): | |
""" | |
Return intersection-over-union (Jaccard index) of boxes. | |
Both sets of boxes are expected to be in (x1, y1, x2, y2) format. | |
Arguments: | |
detections (Array[N, 6]), x1, y1, x2, y2, conf, class | |
labels (Array[M, 5]), class, x1, y1, x2, y2 | |
Returns: | |
None, updates confusion matrix accordingly | |
""" | |
if detections is None: | |
gt_classes = labels.int() | |
for gc in gt_classes: | |
self.matrix[self.nc, gc] += 1 # background FN | |
return | |
detections = detections[detections[:, 4] > self.conf] | |
gt_classes = labels[:, 0].int() | |
detection_classes = detections[:, 5].int() | |
iou = box_iou(labels[:, 1:], detections[:, :4]) | |
x = torch.where(iou > self.iou_thres) | |
if x[0].shape[0]: | |
matches = ( | |
torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1) | |
.cpu() | |
.numpy() | |
) | |
if x[0].shape[0] > 1: | |
matches = matches[matches[:, 2].argsort()[::-1]] | |
matches = matches[ | |
np.unique(matches[:, 1], return_index=True)[1] | |
] | |
matches = matches[matches[:, 2].argsort()[::-1]] | |
matches = matches[ | |
np.unique(matches[:, 0], return_index=True)[1] | |
] | |
else: | |
matches = np.zeros((0, 3)) | |
n = matches.shape[0] > 0 | |
m0, m1, _ = matches.transpose().astype(int) | |
for i, gc in enumerate(gt_classes): | |
j = m0 == i | |
if n and sum(j) == 1: | |
self.matrix[detection_classes[m1[j]], gc] += 1 # correct | |
else: | |
self.matrix[self.nc, gc] += 1 # true background | |
if n: | |
for i, dc in enumerate(detection_classes): | |
if not any(m1 == i): | |
self.matrix[dc, self.nc] += 1 # predicted background | |
def tp_fp(self): | |
tp = self.matrix.diagonal() # true positives | |
fp = self.matrix.sum(1) - tp # false positives | |
# fn = self.matrix.sum(0) - tp # false negatives (missed detections) | |
return tp[:-1], fp[:-1] # remove background class | |
def plot(self, normalize=True, save_dir="", names=()): | |
import seaborn as sn | |
array = self.matrix / ( | |
(self.matrix.sum(0).reshape(1, -1) + 1e-9) if normalize else 1 | |
) # normalize columns | |
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00) | |
fig, ax = plt.subplots(1, 1, figsize=(12, 9), tight_layout=True) | |
nc, nn = self.nc, len(names) # number of classes, names | |
sn.set(font_scale=1.0 if nc < 50 else 0.8) # for label size | |
labels = (0 < nn < 99) and (nn == nc) # apply names to ticklabels | |
ticklabels = (names + ["background"]) if labels else "auto" | |
with warnings.catch_warnings(): | |
warnings.simplefilter( | |
"ignore" | |
) # suppress empty matrix RuntimeWarning: All-NaN slice encountered | |
sn.heatmap( | |
array, | |
ax=ax, | |
annot=nc < 30, | |
annot_kws={"size": 8}, | |
cmap="Blues", | |
fmt=".2f", | |
square=True, | |
vmin=0.0, | |
xticklabels=ticklabels, | |
yticklabels=ticklabels, | |
).set_facecolor((1, 1, 1)) | |
ax.set_ylabel("True") | |
ax.set_ylabel("Predicted") | |
ax.set_title("Confusion Matrix") | |
fig.savefig(Path(save_dir) / "confusion_matrix.png", dpi=250) | |
plt.close(fig) | |
def print(self): | |
for i in range(self.nc + 1): | |
print(" ".join(map(str, self.matrix[i]))) | |
def bbox_iou( | |
box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7 | |
): | |
# Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4) | |
# Get the coordinates of bounding boxes | |
if xywh: # transform from xywh to xyxy | |
(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk( | |
4, -1 | |
) | |
w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2 | |
b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_ | |
b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_ | |
else: # x1, y1, x2, y2 = box1 | |
b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1) | |
b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1) | |
w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps) | |
w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps) | |
# Intersection area | |
inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * ( | |
b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1) | |
).clamp(0) | |
# Union Area | |
union = w1 * h1 + w2 * h2 - inter + eps | |
# IoU | |
iou = inter / union | |
if CIoU or DIoU or GIoU: | |
cw = b1_x2.maximum(b2_x2) - b1_x1.minimum( | |
b2_x1 | |
) # convex (smallest enclosing box) width | |
ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height | |
if ( | |
CIoU or DIoU | |
): # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 | |
c2 = cw**2 + ch**2 + eps # convex diagonal squared | |
rho2 = ( | |
(b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 | |
+ (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2 | |
) / 4 # center dist ** 2 | |
if ( | |
CIoU | |
): # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 | |
v = (4 / math.pi**2) * ( | |
torch.atan(w2 / h2) - torch.atan(w1 / h1) | |
).pow(2) | |
with torch.no_grad(): | |
alpha = v / (v - iou + (1 + eps)) | |
return iou - (rho2 / c2 + v * alpha) # CIoU | |
return iou - rho2 / c2 # DIoU | |
c_area = cw * ch + eps # convex area | |
return ( | |
iou - (c_area - union) / c_area | |
) # GIoU https://arxiv.org/pdf/1902.09630.pdf | |
return iou # IoU | |
def box_iou(box1, box2, eps=1e-7): | |
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py | |
""" | |
Return intersection-over-union (Jaccard index) of boxes. | |
Both sets of boxes are expected to be in (x1, y1, x2, y2) format. | |
Arguments: | |
box1 (Tensor[N, 4]) | |
box2 (Tensor[M, 4]) | |
Returns: | |
iou (Tensor[N, M]): the NxM matrix containing the pairwise | |
IoU values for every element in boxes1 and boxes2 | |
""" | |
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2) | |
(a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze( | |
0 | |
).chunk(2, 2) | |
inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2) | |
# IoU = inter / (area1 + area2 - inter) | |
return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps) | |
def bbox_ioa(box1, box2, eps=1e-7): | |
"""Returns the intersection over box2 area given box1, box2. Boxes are x1y1x2y2 | |
box1: np.array of shape(4) | |
box2: np.array of shape(nx4) | |
returns: np.array of shape(n) | |
""" | |
# Get the coordinates of bounding boxes | |
b1_x1, b1_y1, b1_x2, b1_y2 = box1 | |
b2_x1, b2_y1, b2_x2, b2_y2 = box2.T | |
# Intersection area | |
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip( | |
0 | |
) * (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0) | |
# box2 area | |
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps | |
# Intersection over box2 area | |
return inter_area / box2_area | |
def wh_iou(wh1, wh2, eps=1e-7): | |
# Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2 | |
wh1 = wh1[:, None] # [N,1,2] | |
wh2 = wh2[None] # [1,M,2] | |
inter = torch.min(wh1, wh2).prod(2) # [N,M] | |
return inter / ( | |
wh1.prod(2) + wh2.prod(2) - inter + eps | |
) # iou = inter / (area1 + area2 - inter) | |
# Plots ---------------------------------------------------------------------------------------------------------------- | |
def plot_pr_curve(px, py, ap, save_dir=Path("pr_curve.png"), names=()): | |
# Precision-recall curve | |
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) | |
py = np.stack(py, axis=1) | |
if 0 < len(names) < 21: # display per-class legend if < 21 classes | |
for i, y in enumerate(py.T): | |
ax.plot( | |
px, y, linewidth=1, label=f"{names[i]} {ap[i, 0]:.3f}" | |
) # plot(recall, precision) | |
else: | |
ax.plot(px, py, linewidth=1, color="grey") # plot(recall, precision) | |
ax.plot( | |
px, | |
py.mean(1), | |
linewidth=3, | |
color="blue", | |
label="all classes %.3f mAP@0.5" % ap[:, 0].mean(), | |
) | |
ax.set_xlabel("Recall") | |
ax.set_ylabel("Precision") | |
ax.set_xlim(0, 1) | |
ax.set_ylim(0, 1) | |
ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left") | |
ax.set_title("Precision-Recall Curve") | |
fig.savefig(save_dir, dpi=250) | |
plt.close(fig) | |
def plot_mc_curve( | |
px, | |
py, | |
save_dir=Path("mc_curve.png"), | |
names=(), | |
xlabel="Confidence", | |
ylabel="Metric", | |
): | |
# Metric-confidence curve | |
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) | |
if 0 < len(names) < 21: # display per-class legend if < 21 classes | |
for i, y in enumerate(py): | |
ax.plot( | |
px, y, linewidth=1, label=f"{names[i]}" | |
) # plot(confidence, metric) | |
else: | |
ax.plot( | |
px, py.T, linewidth=1, color="grey" | |
) # plot(confidence, metric) | |
y = smooth(py.mean(0), 0.05) | |
ax.plot( | |
px, | |
y, | |
linewidth=3, | |
color="blue", | |
label=f"all classes {y.max():.2f} at {px[y.argmax()]:.3f}", | |
) | |
ax.set_xlabel(xlabel) | |
ax.set_ylabel(ylabel) | |
ax.set_xlim(0, 1) | |
ax.set_ylim(0, 1) | |
ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left") | |
ax.set_title(f"{ylabel}-Confidence Curve") | |
fig.savefig(save_dir, dpi=250) | |
plt.close(fig) | |