Abhilashvj's picture
Upload 250 files
5b2fcab
raw
history blame
19.9 kB
# YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
"""
Logging utils
"""
import os
import warnings
from pathlib import Path
import pkg_resources as pkg
import torch
from torch.utils.tensorboard import SummaryWriter
from utils.general import LOGGER, colorstr, cv2
from utils.loggers.clearml.clearml_utils import ClearmlLogger
from utils.loggers.wandb.wandb_utils import WandbLogger
from utils.plots import plot_images, plot_labels, plot_results
from utils.torch_utils import de_parallel
LOGGERS = (
"csv",
"tb",
"wandb",
"clearml",
"comet",
) # *.csv, TensorBoard, Weights & Biases, ClearML
RANK = int(os.getenv("RANK", -1))
try:
import wandb
assert hasattr(wandb, "__version__") # verify package import not local dir
if pkg.parse_version(wandb.__version__) >= pkg.parse_version(
"0.12.2"
) and RANK in {0, -1}:
try:
wandb_login_success = wandb.login(timeout=30)
except wandb.errors.UsageError: # known non-TTY terminal issue
wandb_login_success = False
if not wandb_login_success:
wandb = None
except (ImportError, AssertionError):
wandb = None
try:
import clearml
assert hasattr(
clearml, "__version__"
) # verify package import not local dir
except (ImportError, AssertionError):
clearml = None
try:
if RANK not in [0, -1]:
comet_ml = None
else:
import comet_ml
assert hasattr(
comet_ml, "__version__"
) # verify package import not local dir
from utils.loggers.comet import CometLogger
except (ModuleNotFoundError, ImportError, AssertionError):
comet_ml = None
class Loggers:
# YOLOv5 Loggers class
def __init__(
self,
save_dir=None,
weights=None,
opt=None,
hyp=None,
logger=None,
include=LOGGERS,
):
self.save_dir = save_dir
self.weights = weights
self.opt = opt
self.hyp = hyp
self.plots = not opt.noplots # plot results
self.logger = logger # for printing results to console
self.include = include
self.keys = [
"train/box_loss",
"train/obj_loss",
"train/cls_loss", # train loss
"metrics/precision",
"metrics/recall",
"metrics/mAP_0.5",
"metrics/mAP_0.5:0.95", # metrics
"val/box_loss",
"val/obj_loss",
"val/cls_loss", # val loss
"x/lr0",
"x/lr1",
"x/lr2",
] # params
self.best_keys = [
"best/epoch",
"best/precision",
"best/recall",
"best/mAP_0.5",
"best/mAP_0.5:0.95",
]
for k in LOGGERS:
setattr(self, k, None) # init empty logger dictionary
self.csv = True # always log to csv
# Messages
# if not wandb:
# prefix = colorstr('Weights & Biases: ')
# s = f"{prefix}run 'pip install wandb' to automatically track and visualize YOLOv5 πŸš€ runs in Weights & Biases"
# self.logger.info(s)
if not clearml:
prefix = colorstr("ClearML: ")
s = f"{prefix}run 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 πŸš€ in ClearML"
self.logger.info(s)
if not comet_ml:
prefix = colorstr("Comet: ")
s = f"{prefix}run 'pip install comet_ml' to automatically track and visualize YOLOv5 πŸš€ runs in Comet"
self.logger.info(s)
# TensorBoard
s = self.save_dir
if "tb" in self.include and not self.opt.evolve:
prefix = colorstr("TensorBoard: ")
self.logger.info(
f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/"
)
self.tb = SummaryWriter(str(s))
# W&B
if wandb and "wandb" in self.include:
wandb_artifact_resume = isinstance(
self.opt.resume, str
) and self.opt.resume.startswith("wandb-artifact://")
run_id = (
torch.load(self.weights).get("wandb_id")
if self.opt.resume and not wandb_artifact_resume
else None
)
self.opt.hyp = self.hyp # add hyperparameters
self.wandb = WandbLogger(self.opt, run_id)
# temp warn. because nested artifacts not supported after 0.12.10
# if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.11'):
# s = "YOLOv5 temporarily requires wandb version 0.12.10 or below. Some features may not work as expected."
# self.logger.warning(s)
else:
self.wandb = None
# ClearML
if clearml and "clearml" in self.include:
try:
self.clearml = ClearmlLogger(self.opt, self.hyp)
except Exception:
self.clearml = None
prefix = colorstr("ClearML: ")
LOGGER.warning(
f"{prefix}WARNING ⚠️ ClearML is installed but not configured, skipping ClearML logging."
f" See https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml#readme"
)
else:
self.clearml = None
# Comet
if comet_ml and "comet" in self.include:
if isinstance(self.opt.resume, str) and self.opt.resume.startswith(
"comet://"
):
run_id = self.opt.resume.split("/")[-1]
self.comet_logger = CometLogger(
self.opt, self.hyp, run_id=run_id
)
else:
self.comet_logger = CometLogger(self.opt, self.hyp)
else:
self.comet_logger = None
@property
def remote_dataset(self):
# Get data_dict if custom dataset artifact link is provided
data_dict = None
if self.clearml:
data_dict = self.clearml.data_dict
if self.wandb:
data_dict = self.wandb.data_dict
if self.comet_logger:
data_dict = self.comet_logger.data_dict
return data_dict
def on_train_start(self):
if self.comet_logger:
self.comet_logger.on_train_start()
def on_pretrain_routine_start(self):
if self.comet_logger:
self.comet_logger.on_pretrain_routine_start()
def on_pretrain_routine_end(self, labels, names):
# Callback runs on pre-train routine end
if self.plots:
plot_labels(labels, names, self.save_dir)
paths = self.save_dir.glob("*labels*.jpg") # training labels
if self.wandb:
self.wandb.log(
{
"Labels": [
wandb.Image(str(x), caption=x.name) for x in paths
]
}
)
# if self.clearml:
# pass # ClearML saves these images automatically using hooks
if self.comet_logger:
self.comet_logger.on_pretrain_routine_end(paths)
def on_train_batch_end(self, model, ni, imgs, targets, paths, vals):
log_dict = dict(zip(self.keys[0:3], vals))
# Callback runs on train batch end
# ni: number integrated batches (since train start)
if self.plots:
if ni < 3:
f = self.save_dir / f"train_batch{ni}.jpg" # filename
plot_images(imgs, targets, paths, f)
if ni == 0 and self.tb and not self.opt.sync_bn:
log_tensorboard_graph(
self.tb, model, imgsz=(self.opt.imgsz, self.opt.imgsz)
)
if ni == 10 and (self.wandb or self.clearml):
files = sorted(self.save_dir.glob("train*.jpg"))
if self.wandb:
self.wandb.log(
{
"Mosaics": [
wandb.Image(str(f), caption=f.name)
for f in files
if f.exists()
]
}
)
if self.clearml:
self.clearml.log_debug_samples(files, title="Mosaics")
if self.comet_logger:
self.comet_logger.on_train_batch_end(log_dict, step=ni)
def on_train_epoch_end(self, epoch):
# Callback runs on train epoch end
if self.wandb:
self.wandb.current_epoch = epoch + 1
if self.comet_logger:
self.comet_logger.on_train_epoch_end(epoch)
def on_val_start(self):
if self.comet_logger:
self.comet_logger.on_val_start()
def on_val_image_end(self, pred, predn, path, names, im):
# Callback runs on val image end
if self.wandb:
self.wandb.val_one_image(pred, predn, path, names, im)
if self.clearml:
self.clearml.log_image_with_boxes(path, pred, names, im)
def on_val_batch_end(self, batch_i, im, targets, paths, shapes, out):
if self.comet_logger:
self.comet_logger.on_val_batch_end(
batch_i, im, targets, paths, shapes, out
)
def on_val_end(
self, nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix
):
# Callback runs on val end
if self.wandb or self.clearml:
files = sorted(self.save_dir.glob("val*.jpg"))
if self.wandb:
self.wandb.log(
{
"Validation": [
wandb.Image(str(f), caption=f.name) for f in files
]
}
)
if self.clearml:
self.clearml.log_debug_samples(files, title="Validation")
if self.comet_logger:
self.comet_logger.on_val_end(
nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix
)
def on_fit_epoch_end(self, vals, epoch, best_fitness, fi):
# Callback runs at the end of each fit (train+val) epoch
x = dict(zip(self.keys, vals))
if self.csv:
file = self.save_dir / "results.csv"
n = len(x) + 1 # number of cols
s = (
""
if file.exists()
else (
("%20s," * n % tuple(["epoch"] + self.keys)).rstrip(",")
+ "\n"
)
) # add header
with open(file, "a") as f:
f.write(
s
+ ("%20.5g," * n % tuple([epoch] + vals)).rstrip(",")
+ "\n"
)
if self.tb:
for k, v in x.items():
self.tb.add_scalar(k, v, epoch)
elif self.clearml: # log to ClearML if TensorBoard not used
for k, v in x.items():
title, series = k.split("/")
self.clearml.task.get_logger().report_scalar(
title, series, v, epoch
)
if self.wandb:
if best_fitness == fi:
best_results = [epoch] + vals[3:7]
for i, name in enumerate(self.best_keys):
self.wandb.wandb_run.summary[name] = best_results[
i
] # log best results in the summary
self.wandb.log(x)
self.wandb.end_epoch(best_result=best_fitness == fi)
if self.clearml:
self.clearml.current_epoch_logged_images = (
set()
) # reset epoch image limit
self.clearml.current_epoch += 1
if self.comet_logger:
self.comet_logger.on_fit_epoch_end(x, epoch=epoch)
def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
# Callback runs on model save event
if (
(epoch + 1) % self.opt.save_period == 0
and not final_epoch
and self.opt.save_period != -1
):
if self.wandb:
self.wandb.log_model(
last.parent,
self.opt,
epoch,
fi,
best_model=best_fitness == fi,
)
if self.clearml:
self.clearml.task.update_output_model(
model_path=str(last),
model_name="Latest Model",
auto_delete_file=False,
)
if self.comet_logger:
self.comet_logger.on_model_save(
last, epoch, final_epoch, best_fitness, fi
)
def on_train_end(self, last, best, epoch, results):
# Callback runs on training end, i.e. saving best model
if self.plots:
plot_results(
file=self.save_dir / "results.csv"
) # save results.png
files = [
"results.png",
"confusion_matrix.png",
*(f"{x}_curve.png" for x in ("F1", "PR", "P", "R")),
]
files = [
(self.save_dir / f) for f in files if (self.save_dir / f).exists()
] # filter
self.logger.info(f"Results saved to {colorstr('bold', self.save_dir)}")
if (
self.tb and not self.clearml
): # These images are already captured by ClearML by now, we don't want doubles
for f in files:
self.tb.add_image(
f.stem,
cv2.imread(str(f))[..., ::-1],
epoch,
dataformats="HWC",
)
if self.wandb:
self.wandb.log(dict(zip(self.keys[3:10], results)))
self.wandb.log(
{
"Results": [
wandb.Image(str(f), caption=f.name) for f in files
]
}
)
# Calling wandb.log. TODO: Refactor this into WandbLogger.log_model
if not self.opt.evolve:
wandb.log_artifact(
str(best if best.exists() else last),
type="model",
name=f"run_{self.wandb.wandb_run.id}_model",
aliases=["latest", "best", "stripped"],
)
self.wandb.finish_run()
if self.clearml and not self.opt.evolve:
self.clearml.task.update_output_model(
model_path=str(best if best.exists() else last),
name="Best Model",
auto_delete_file=False,
)
if self.comet_logger:
final_results = dict(zip(self.keys[3:10], results))
self.comet_logger.on_train_end(
files, self.save_dir, last, best, epoch, final_results
)
def on_params_update(self, params: dict):
# Update hyperparams or configs of the experiment
if self.wandb:
self.wandb.wandb_run.config.update(params, allow_val_change=True)
if self.comet_logger:
self.comet_logger.on_params_update(params)
class GenericLogger:
"""
YOLOv5 General purpose logger for non-task specific logging
Usage: from utils.loggers import GenericLogger; logger = GenericLogger(...)
Arguments
opt: Run arguments
console_logger: Console logger
include: loggers to include
"""
def __init__(self, opt, console_logger, include=("tb", "wandb")):
# init default loggers
self.save_dir = Path(opt.save_dir)
self.include = include
self.console_logger = console_logger
self.csv = self.save_dir / "results.csv" # CSV logger
if "tb" in self.include:
prefix = colorstr("TensorBoard: ")
self.console_logger.info(
f"{prefix}Start with 'tensorboard --logdir {self.save_dir.parent}', view at http://localhost:6006/"
)
self.tb = SummaryWriter(str(self.save_dir))
if wandb and "wandb" in self.include:
self.wandb = wandb.init(
project=web_project_name(str(opt.project)),
name=None if opt.name == "exp" else opt.name,
config=opt,
)
else:
self.wandb = None
def log_metrics(self, metrics, epoch):
# Log metrics dictionary to all loggers
if self.csv:
keys, vals = list(metrics.keys()), list(metrics.values())
n = len(metrics) + 1 # number of cols
s = (
""
if self.csv.exists()
else (
("%23s," * n % tuple(["epoch"] + keys)).rstrip(",") + "\n"
)
) # header
with open(self.csv, "a") as f:
f.write(
s
+ ("%23.5g," * n % tuple([epoch] + vals)).rstrip(",")
+ "\n"
)
if self.tb:
for k, v in metrics.items():
self.tb.add_scalar(k, v, epoch)
if self.wandb:
self.wandb.log(metrics, step=epoch)
def log_images(self, files, name="Images", epoch=0):
# Log images to all loggers
files = [
Path(f)
for f in (files if isinstance(files, (tuple, list)) else [files])
] # to Path
files = [f for f in files if f.exists()] # filter by exists
if self.tb:
for f in files:
self.tb.add_image(
f.stem,
cv2.imread(str(f))[..., ::-1],
epoch,
dataformats="HWC",
)
if self.wandb:
self.wandb.log(
{name: [wandb.Image(str(f), caption=f.name) for f in files]},
step=epoch,
)
def log_graph(self, model, imgsz=(640, 640)):
# Log model graph to all loggers
if self.tb:
log_tensorboard_graph(self.tb, model, imgsz)
def log_model(self, model_path, epoch=0, metadata={}):
# Log model to all loggers
if self.wandb:
art = wandb.Artifact(
name=f"run_{wandb.run.id}_model",
type="model",
metadata=metadata,
)
art.add_file(str(model_path))
wandb.log_artifact(art)
def update_params(self, params):
# Update the paramters logged
if self.wandb:
wandb.run.config.update(params, allow_val_change=True)
def log_tensorboard_graph(tb, model, imgsz=(640, 640)):
# Log model graph to TensorBoard
try:
p = next(model.parameters()) # for device, type
imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz # expand
im = (
torch.zeros((1, 3, *imgsz)).to(p.device).type_as(p)
) # input image (WARNING: must be zeros, not empty)
with warnings.catch_warnings():
warnings.simplefilter("ignore") # suppress jit trace warning
tb.add_graph(
torch.jit.trace(de_parallel(model), im, strict=False), []
)
except Exception as e:
LOGGER.warning(
f"WARNING ⚠️ TensorBoard graph visualization failure {e}"
)
def web_project_name(project):
# Convert local project name to web project name
if not project.startswith("runs/train"):
return project
suffix = (
"-Classify"
if project.endswith("-cls")
else "-Segment"
if project.endswith("-seg")
else ""
)
return f"YOLOv5{suffix}"