Spaces:
Runtime error
Runtime error
# YOLOv5 π by Ultralytics, GPL-3.0 license | |
""" | |
Logging utils | |
""" | |
import os | |
import warnings | |
from pathlib import Path | |
import pkg_resources as pkg | |
import torch | |
from torch.utils.tensorboard import SummaryWriter | |
from utils.general import LOGGER, colorstr, cv2 | |
from utils.loggers.clearml.clearml_utils import ClearmlLogger | |
from utils.loggers.wandb.wandb_utils import WandbLogger | |
from utils.plots import plot_images, plot_labels, plot_results | |
from utils.torch_utils import de_parallel | |
LOGGERS = ( | |
"csv", | |
"tb", | |
"wandb", | |
"clearml", | |
"comet", | |
) # *.csv, TensorBoard, Weights & Biases, ClearML | |
RANK = int(os.getenv("RANK", -1)) | |
try: | |
import wandb | |
assert hasattr(wandb, "__version__") # verify package import not local dir | |
if pkg.parse_version(wandb.__version__) >= pkg.parse_version( | |
"0.12.2" | |
) and RANK in {0, -1}: | |
try: | |
wandb_login_success = wandb.login(timeout=30) | |
except wandb.errors.UsageError: # known non-TTY terminal issue | |
wandb_login_success = False | |
if not wandb_login_success: | |
wandb = None | |
except (ImportError, AssertionError): | |
wandb = None | |
try: | |
import clearml | |
assert hasattr( | |
clearml, "__version__" | |
) # verify package import not local dir | |
except (ImportError, AssertionError): | |
clearml = None | |
try: | |
if RANK not in [0, -1]: | |
comet_ml = None | |
else: | |
import comet_ml | |
assert hasattr( | |
comet_ml, "__version__" | |
) # verify package import not local dir | |
from utils.loggers.comet import CometLogger | |
except (ModuleNotFoundError, ImportError, AssertionError): | |
comet_ml = None | |
class Loggers: | |
# YOLOv5 Loggers class | |
def __init__( | |
self, | |
save_dir=None, | |
weights=None, | |
opt=None, | |
hyp=None, | |
logger=None, | |
include=LOGGERS, | |
): | |
self.save_dir = save_dir | |
self.weights = weights | |
self.opt = opt | |
self.hyp = hyp | |
self.plots = not opt.noplots # plot results | |
self.logger = logger # for printing results to console | |
self.include = include | |
self.keys = [ | |
"train/box_loss", | |
"train/obj_loss", | |
"train/cls_loss", # train loss | |
"metrics/precision", | |
"metrics/recall", | |
"metrics/mAP_0.5", | |
"metrics/mAP_0.5:0.95", # metrics | |
"val/box_loss", | |
"val/obj_loss", | |
"val/cls_loss", # val loss | |
"x/lr0", | |
"x/lr1", | |
"x/lr2", | |
] # params | |
self.best_keys = [ | |
"best/epoch", | |
"best/precision", | |
"best/recall", | |
"best/mAP_0.5", | |
"best/mAP_0.5:0.95", | |
] | |
for k in LOGGERS: | |
setattr(self, k, None) # init empty logger dictionary | |
self.csv = True # always log to csv | |
# Messages | |
# if not wandb: | |
# prefix = colorstr('Weights & Biases: ') | |
# s = f"{prefix}run 'pip install wandb' to automatically track and visualize YOLOv5 π runs in Weights & Biases" | |
# self.logger.info(s) | |
if not clearml: | |
prefix = colorstr("ClearML: ") | |
s = f"{prefix}run 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 π in ClearML" | |
self.logger.info(s) | |
if not comet_ml: | |
prefix = colorstr("Comet: ") | |
s = f"{prefix}run 'pip install comet_ml' to automatically track and visualize YOLOv5 π runs in Comet" | |
self.logger.info(s) | |
# TensorBoard | |
s = self.save_dir | |
if "tb" in self.include and not self.opt.evolve: | |
prefix = colorstr("TensorBoard: ") | |
self.logger.info( | |
f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/" | |
) | |
self.tb = SummaryWriter(str(s)) | |
# W&B | |
if wandb and "wandb" in self.include: | |
wandb_artifact_resume = isinstance( | |
self.opt.resume, str | |
) and self.opt.resume.startswith("wandb-artifact://") | |
run_id = ( | |
torch.load(self.weights).get("wandb_id") | |
if self.opt.resume and not wandb_artifact_resume | |
else None | |
) | |
self.opt.hyp = self.hyp # add hyperparameters | |
self.wandb = WandbLogger(self.opt, run_id) | |
# temp warn. because nested artifacts not supported after 0.12.10 | |
# if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.11'): | |
# s = "YOLOv5 temporarily requires wandb version 0.12.10 or below. Some features may not work as expected." | |
# self.logger.warning(s) | |
else: | |
self.wandb = None | |
# ClearML | |
if clearml and "clearml" in self.include: | |
try: | |
self.clearml = ClearmlLogger(self.opt, self.hyp) | |
except Exception: | |
self.clearml = None | |
prefix = colorstr("ClearML: ") | |
LOGGER.warning( | |
f"{prefix}WARNING β οΈ ClearML is installed but not configured, skipping ClearML logging." | |
f" See https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml#readme" | |
) | |
else: | |
self.clearml = None | |
# Comet | |
if comet_ml and "comet" in self.include: | |
if isinstance(self.opt.resume, str) and self.opt.resume.startswith( | |
"comet://" | |
): | |
run_id = self.opt.resume.split("/")[-1] | |
self.comet_logger = CometLogger( | |
self.opt, self.hyp, run_id=run_id | |
) | |
else: | |
self.comet_logger = CometLogger(self.opt, self.hyp) | |
else: | |
self.comet_logger = None | |
def remote_dataset(self): | |
# Get data_dict if custom dataset artifact link is provided | |
data_dict = None | |
if self.clearml: | |
data_dict = self.clearml.data_dict | |
if self.wandb: | |
data_dict = self.wandb.data_dict | |
if self.comet_logger: | |
data_dict = self.comet_logger.data_dict | |
return data_dict | |
def on_train_start(self): | |
if self.comet_logger: | |
self.comet_logger.on_train_start() | |
def on_pretrain_routine_start(self): | |
if self.comet_logger: | |
self.comet_logger.on_pretrain_routine_start() | |
def on_pretrain_routine_end(self, labels, names): | |
# Callback runs on pre-train routine end | |
if self.plots: | |
plot_labels(labels, names, self.save_dir) | |
paths = self.save_dir.glob("*labels*.jpg") # training labels | |
if self.wandb: | |
self.wandb.log( | |
{ | |
"Labels": [ | |
wandb.Image(str(x), caption=x.name) for x in paths | |
] | |
} | |
) | |
# if self.clearml: | |
# pass # ClearML saves these images automatically using hooks | |
if self.comet_logger: | |
self.comet_logger.on_pretrain_routine_end(paths) | |
def on_train_batch_end(self, model, ni, imgs, targets, paths, vals): | |
log_dict = dict(zip(self.keys[0:3], vals)) | |
# Callback runs on train batch end | |
# ni: number integrated batches (since train start) | |
if self.plots: | |
if ni < 3: | |
f = self.save_dir / f"train_batch{ni}.jpg" # filename | |
plot_images(imgs, targets, paths, f) | |
if ni == 0 and self.tb and not self.opt.sync_bn: | |
log_tensorboard_graph( | |
self.tb, model, imgsz=(self.opt.imgsz, self.opt.imgsz) | |
) | |
if ni == 10 and (self.wandb or self.clearml): | |
files = sorted(self.save_dir.glob("train*.jpg")) | |
if self.wandb: | |
self.wandb.log( | |
{ | |
"Mosaics": [ | |
wandb.Image(str(f), caption=f.name) | |
for f in files | |
if f.exists() | |
] | |
} | |
) | |
if self.clearml: | |
self.clearml.log_debug_samples(files, title="Mosaics") | |
if self.comet_logger: | |
self.comet_logger.on_train_batch_end(log_dict, step=ni) | |
def on_train_epoch_end(self, epoch): | |
# Callback runs on train epoch end | |
if self.wandb: | |
self.wandb.current_epoch = epoch + 1 | |
if self.comet_logger: | |
self.comet_logger.on_train_epoch_end(epoch) | |
def on_val_start(self): | |
if self.comet_logger: | |
self.comet_logger.on_val_start() | |
def on_val_image_end(self, pred, predn, path, names, im): | |
# Callback runs on val image end | |
if self.wandb: | |
self.wandb.val_one_image(pred, predn, path, names, im) | |
if self.clearml: | |
self.clearml.log_image_with_boxes(path, pred, names, im) | |
def on_val_batch_end(self, batch_i, im, targets, paths, shapes, out): | |
if self.comet_logger: | |
self.comet_logger.on_val_batch_end( | |
batch_i, im, targets, paths, shapes, out | |
) | |
def on_val_end( | |
self, nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix | |
): | |
# Callback runs on val end | |
if self.wandb or self.clearml: | |
files = sorted(self.save_dir.glob("val*.jpg")) | |
if self.wandb: | |
self.wandb.log( | |
{ | |
"Validation": [ | |
wandb.Image(str(f), caption=f.name) for f in files | |
] | |
} | |
) | |
if self.clearml: | |
self.clearml.log_debug_samples(files, title="Validation") | |
if self.comet_logger: | |
self.comet_logger.on_val_end( | |
nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix | |
) | |
def on_fit_epoch_end(self, vals, epoch, best_fitness, fi): | |
# Callback runs at the end of each fit (train+val) epoch | |
x = dict(zip(self.keys, vals)) | |
if self.csv: | |
file = self.save_dir / "results.csv" | |
n = len(x) + 1 # number of cols | |
s = ( | |
"" | |
if file.exists() | |
else ( | |
("%20s," * n % tuple(["epoch"] + self.keys)).rstrip(",") | |
+ "\n" | |
) | |
) # add header | |
with open(file, "a") as f: | |
f.write( | |
s | |
+ ("%20.5g," * n % tuple([epoch] + vals)).rstrip(",") | |
+ "\n" | |
) | |
if self.tb: | |
for k, v in x.items(): | |
self.tb.add_scalar(k, v, epoch) | |
elif self.clearml: # log to ClearML if TensorBoard not used | |
for k, v in x.items(): | |
title, series = k.split("/") | |
self.clearml.task.get_logger().report_scalar( | |
title, series, v, epoch | |
) | |
if self.wandb: | |
if best_fitness == fi: | |
best_results = [epoch] + vals[3:7] | |
for i, name in enumerate(self.best_keys): | |
self.wandb.wandb_run.summary[name] = best_results[ | |
i | |
] # log best results in the summary | |
self.wandb.log(x) | |
self.wandb.end_epoch(best_result=best_fitness == fi) | |
if self.clearml: | |
self.clearml.current_epoch_logged_images = ( | |
set() | |
) # reset epoch image limit | |
self.clearml.current_epoch += 1 | |
if self.comet_logger: | |
self.comet_logger.on_fit_epoch_end(x, epoch=epoch) | |
def on_model_save(self, last, epoch, final_epoch, best_fitness, fi): | |
# Callback runs on model save event | |
if ( | |
(epoch + 1) % self.opt.save_period == 0 | |
and not final_epoch | |
and self.opt.save_period != -1 | |
): | |
if self.wandb: | |
self.wandb.log_model( | |
last.parent, | |
self.opt, | |
epoch, | |
fi, | |
best_model=best_fitness == fi, | |
) | |
if self.clearml: | |
self.clearml.task.update_output_model( | |
model_path=str(last), | |
model_name="Latest Model", | |
auto_delete_file=False, | |
) | |
if self.comet_logger: | |
self.comet_logger.on_model_save( | |
last, epoch, final_epoch, best_fitness, fi | |
) | |
def on_train_end(self, last, best, epoch, results): | |
# Callback runs on training end, i.e. saving best model | |
if self.plots: | |
plot_results( | |
file=self.save_dir / "results.csv" | |
) # save results.png | |
files = [ | |
"results.png", | |
"confusion_matrix.png", | |
*(f"{x}_curve.png" for x in ("F1", "PR", "P", "R")), | |
] | |
files = [ | |
(self.save_dir / f) for f in files if (self.save_dir / f).exists() | |
] # filter | |
self.logger.info(f"Results saved to {colorstr('bold', self.save_dir)}") | |
if ( | |
self.tb and not self.clearml | |
): # These images are already captured by ClearML by now, we don't want doubles | |
for f in files: | |
self.tb.add_image( | |
f.stem, | |
cv2.imread(str(f))[..., ::-1], | |
epoch, | |
dataformats="HWC", | |
) | |
if self.wandb: | |
self.wandb.log(dict(zip(self.keys[3:10], results))) | |
self.wandb.log( | |
{ | |
"Results": [ | |
wandb.Image(str(f), caption=f.name) for f in files | |
] | |
} | |
) | |
# Calling wandb.log. TODO: Refactor this into WandbLogger.log_model | |
if not self.opt.evolve: | |
wandb.log_artifact( | |
str(best if best.exists() else last), | |
type="model", | |
name=f"run_{self.wandb.wandb_run.id}_model", | |
aliases=["latest", "best", "stripped"], | |
) | |
self.wandb.finish_run() | |
if self.clearml and not self.opt.evolve: | |
self.clearml.task.update_output_model( | |
model_path=str(best if best.exists() else last), | |
name="Best Model", | |
auto_delete_file=False, | |
) | |
if self.comet_logger: | |
final_results = dict(zip(self.keys[3:10], results)) | |
self.comet_logger.on_train_end( | |
files, self.save_dir, last, best, epoch, final_results | |
) | |
def on_params_update(self, params: dict): | |
# Update hyperparams or configs of the experiment | |
if self.wandb: | |
self.wandb.wandb_run.config.update(params, allow_val_change=True) | |
if self.comet_logger: | |
self.comet_logger.on_params_update(params) | |
class GenericLogger: | |
""" | |
YOLOv5 General purpose logger for non-task specific logging | |
Usage: from utils.loggers import GenericLogger; logger = GenericLogger(...) | |
Arguments | |
opt: Run arguments | |
console_logger: Console logger | |
include: loggers to include | |
""" | |
def __init__(self, opt, console_logger, include=("tb", "wandb")): | |
# init default loggers | |
self.save_dir = Path(opt.save_dir) | |
self.include = include | |
self.console_logger = console_logger | |
self.csv = self.save_dir / "results.csv" # CSV logger | |
if "tb" in self.include: | |
prefix = colorstr("TensorBoard: ") | |
self.console_logger.info( | |
f"{prefix}Start with 'tensorboard --logdir {self.save_dir.parent}', view at http://localhost:6006/" | |
) | |
self.tb = SummaryWriter(str(self.save_dir)) | |
if wandb and "wandb" in self.include: | |
self.wandb = wandb.init( | |
project=web_project_name(str(opt.project)), | |
name=None if opt.name == "exp" else opt.name, | |
config=opt, | |
) | |
else: | |
self.wandb = None | |
def log_metrics(self, metrics, epoch): | |
# Log metrics dictionary to all loggers | |
if self.csv: | |
keys, vals = list(metrics.keys()), list(metrics.values()) | |
n = len(metrics) + 1 # number of cols | |
s = ( | |
"" | |
if self.csv.exists() | |
else ( | |
("%23s," * n % tuple(["epoch"] + keys)).rstrip(",") + "\n" | |
) | |
) # header | |
with open(self.csv, "a") as f: | |
f.write( | |
s | |
+ ("%23.5g," * n % tuple([epoch] + vals)).rstrip(",") | |
+ "\n" | |
) | |
if self.tb: | |
for k, v in metrics.items(): | |
self.tb.add_scalar(k, v, epoch) | |
if self.wandb: | |
self.wandb.log(metrics, step=epoch) | |
def log_images(self, files, name="Images", epoch=0): | |
# Log images to all loggers | |
files = [ | |
Path(f) | |
for f in (files if isinstance(files, (tuple, list)) else [files]) | |
] # to Path | |
files = [f for f in files if f.exists()] # filter by exists | |
if self.tb: | |
for f in files: | |
self.tb.add_image( | |
f.stem, | |
cv2.imread(str(f))[..., ::-1], | |
epoch, | |
dataformats="HWC", | |
) | |
if self.wandb: | |
self.wandb.log( | |
{name: [wandb.Image(str(f), caption=f.name) for f in files]}, | |
step=epoch, | |
) | |
def log_graph(self, model, imgsz=(640, 640)): | |
# Log model graph to all loggers | |
if self.tb: | |
log_tensorboard_graph(self.tb, model, imgsz) | |
def log_model(self, model_path, epoch=0, metadata={}): | |
# Log model to all loggers | |
if self.wandb: | |
art = wandb.Artifact( | |
name=f"run_{wandb.run.id}_model", | |
type="model", | |
metadata=metadata, | |
) | |
art.add_file(str(model_path)) | |
wandb.log_artifact(art) | |
def update_params(self, params): | |
# Update the paramters logged | |
if self.wandb: | |
wandb.run.config.update(params, allow_val_change=True) | |
def log_tensorboard_graph(tb, model, imgsz=(640, 640)): | |
# Log model graph to TensorBoard | |
try: | |
p = next(model.parameters()) # for device, type | |
imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz # expand | |
im = ( | |
torch.zeros((1, 3, *imgsz)).to(p.device).type_as(p) | |
) # input image (WARNING: must be zeros, not empty) | |
with warnings.catch_warnings(): | |
warnings.simplefilter("ignore") # suppress jit trace warning | |
tb.add_graph( | |
torch.jit.trace(de_parallel(model), im, strict=False), [] | |
) | |
except Exception as e: | |
LOGGER.warning( | |
f"WARNING β οΈ TensorBoard graph visualization failure {e}" | |
) | |
def web_project_name(project): | |
# Convert local project name to web project name | |
if not project.startswith("runs/train"): | |
return project | |
suffix = ( | |
"-Classify" | |
if project.endswith("-cls") | |
else "-Segment" | |
if project.endswith("-seg") | |
else "" | |
) | |
return f"YOLOv5{suffix}" | |