Spaces:
Runtime error
Runtime error
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license | |
""" | |
Image augmentation functions | |
""" | |
import math | |
import random | |
import cv2 | |
import numpy as np | |
import torch | |
import torchvision.transforms as T | |
import torchvision.transforms.functional as TF | |
from utils.general import ( | |
LOGGER, | |
check_version, | |
colorstr, | |
resample_segments, | |
segment2box, | |
xywhn2xyxy, | |
) | |
from utils.metrics import bbox_ioa | |
IMAGENET_MEAN = 0.485, 0.456, 0.406 # RGB mean | |
IMAGENET_STD = 0.229, 0.224, 0.225 # RGB standard deviation | |
class Albumentations: | |
# YOLOv5 Albumentations class (optional, only used if package is installed) | |
def __init__(self, size=640): | |
self.transform = None | |
prefix = colorstr("albumentations: ") | |
try: | |
import albumentations as A | |
check_version( | |
A.__version__, "1.0.3", hard=True | |
) # version requirement | |
T = [ | |
A.RandomResizedCrop( | |
height=size, | |
width=size, | |
scale=(0.8, 1.0), | |
ratio=(0.9, 1.11), | |
p=0.0, | |
), | |
A.Blur(p=0.01), | |
A.MedianBlur(p=0.01), | |
A.ToGray(p=0.01), | |
A.CLAHE(p=0.01), | |
A.RandomBrightnessContrast(p=0.0), | |
A.RandomGamma(p=0.0), | |
A.ImageCompression(quality_lower=75, p=0.0), | |
] # transforms | |
self.transform = A.Compose( | |
T, | |
bbox_params=A.BboxParams( | |
format="yolo", label_fields=["class_labels"] | |
), | |
) | |
LOGGER.info( | |
prefix | |
+ ", ".join( | |
f"{x}".replace("always_apply=False, ", "") | |
for x in T | |
if x.p | |
) | |
) | |
except ImportError: # package not installed, skip | |
pass | |
except Exception as e: | |
LOGGER.info(f"{prefix}{e}") | |
def __call__(self, im, labels, p=1.0): | |
if self.transform and random.random() < p: | |
new = self.transform( | |
image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0] | |
) # transformed | |
im, labels = new["image"], np.array( | |
[[c, *b] for c, b in zip(new["class_labels"], new["bboxes"])] | |
) | |
return im, labels | |
def normalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD, inplace=False): | |
# Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = (x - mean) / std | |
return TF.normalize(x, mean, std, inplace=inplace) | |
def denormalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD): | |
# Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = x * std + mean | |
for i in range(3): | |
x[:, i] = x[:, i] * std[i] + mean[i] | |
return x | |
def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5): | |
# HSV color-space augmentation | |
if hgain or sgain or vgain: | |
r = ( | |
np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 | |
) # random gains | |
hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV)) | |
dtype = im.dtype # uint8 | |
x = np.arange(0, 256, dtype=r.dtype) | |
lut_hue = ((x * r[0]) % 180).astype(dtype) | |
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) | |
lut_val = np.clip(x * r[2], 0, 255).astype(dtype) | |
im_hsv = cv2.merge( | |
( | |
cv2.LUT(hue, lut_hue), | |
cv2.LUT(sat, lut_sat), | |
cv2.LUT(val, lut_val), | |
) | |
) | |
cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) # no return needed | |
def hist_equalize(im, clahe=True, bgr=False): | |
# Equalize histogram on BGR image 'im' with im.shape(n,m,3) and range 0-255 | |
yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV) | |
if clahe: | |
c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) | |
yuv[:, :, 0] = c.apply(yuv[:, :, 0]) | |
else: | |
yuv[:, :, 0] = cv2.equalizeHist( | |
yuv[:, :, 0] | |
) # equalize Y channel histogram | |
return cv2.cvtColor( | |
yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB | |
) # convert YUV image to RGB | |
def replicate(im, labels): | |
# Replicate labels | |
h, w = im.shape[:2] | |
boxes = labels[:, 1:].astype(int) | |
x1, y1, x2, y2 = boxes.T | |
s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels) | |
for i in s.argsort()[: round(s.size * 0.5)]: # smallest indices | |
x1b, y1b, x2b, y2b = boxes[i] | |
bh, bw = y2b - y1b, x2b - x1b | |
yc, xc = int(random.uniform(0, h - bh)), int( | |
random.uniform(0, w - bw) | |
) # offset x, y | |
x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh] | |
im[y1a:y2a, x1a:x2a] = im[ | |
y1b:y2b, x1b:x2b | |
] # im4[ymin:ymax, xmin:xmax] | |
labels = np.append( | |
labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0 | |
) | |
return im, labels | |
def letterbox( | |
im, | |
new_shape=(640, 640), | |
color=(114, 114, 114), | |
auto=True, | |
scaleFill=False, | |
scaleup=True, | |
stride=32, | |
): | |
# Resize and pad image while meeting stride-multiple constraints | |
shape = im.shape[:2] # current shape [height, width] | |
if isinstance(new_shape, int): | |
new_shape = (new_shape, new_shape) | |
# Scale ratio (new / old) | |
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) | |
if not scaleup: # only scale down, do not scale up (for better val mAP) | |
r = min(r, 1.0) | |
# Compute padding | |
ratio = r, r # width, height ratios | |
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) | |
dw, dh = ( | |
new_shape[1] - new_unpad[0], | |
new_shape[0] - new_unpad[1], | |
) # wh padding | |
if auto: # minimum rectangle | |
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding | |
elif scaleFill: # stretch | |
dw, dh = 0.0, 0.0 | |
new_unpad = (new_shape[1], new_shape[0]) | |
ratio = ( | |
new_shape[1] / shape[1], | |
new_shape[0] / shape[0], | |
) # width, height ratios | |
dw /= 2 # divide padding into 2 sides | |
dh /= 2 | |
if shape[::-1] != new_unpad: # resize | |
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR) | |
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) | |
left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) | |
im = cv2.copyMakeBorder( | |
im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color | |
) # add border | |
return im, ratio, (dw, dh) | |
def random_perspective( | |
im, | |
targets=(), | |
segments=(), | |
degrees=10, | |
translate=0.1, | |
scale=0.1, | |
shear=10, | |
perspective=0.0, | |
border=(0, 0), | |
): | |
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10)) | |
# targets = [cls, xyxy] | |
height = im.shape[0] + border[0] * 2 # shape(h,w,c) | |
width = im.shape[1] + border[1] * 2 | |
# Center | |
C = np.eye(3) | |
C[0, 2] = -im.shape[1] / 2 # x translation (pixels) | |
C[1, 2] = -im.shape[0] / 2 # y translation (pixels) | |
# Perspective | |
P = np.eye(3) | |
P[2, 0] = random.uniform( | |
-perspective, perspective | |
) # x perspective (about y) | |
P[2, 1] = random.uniform( | |
-perspective, perspective | |
) # y perspective (about x) | |
# Rotation and Scale | |
R = np.eye(3) | |
a = random.uniform(-degrees, degrees) | |
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations | |
s = random.uniform(1 - scale, 1 + scale) | |
# s = 2 ** random.uniform(-scale, scale) | |
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) | |
# Shear | |
S = np.eye(3) | |
S[0, 1] = math.tan( | |
random.uniform(-shear, shear) * math.pi / 180 | |
) # x shear (deg) | |
S[1, 0] = math.tan( | |
random.uniform(-shear, shear) * math.pi / 180 | |
) # y shear (deg) | |
# Translation | |
T = np.eye(3) | |
T[0, 2] = ( | |
random.uniform(0.5 - translate, 0.5 + translate) * width | |
) # x translation (pixels) | |
T[1, 2] = ( | |
random.uniform(0.5 - translate, 0.5 + translate) * height | |
) # y translation (pixels) | |
# Combined rotation matrix | |
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT | |
if ( | |
(border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any() | |
): # image changed | |
if perspective: | |
im = cv2.warpPerspective( | |
im, M, dsize=(width, height), borderValue=(114, 114, 114) | |
) | |
else: # affine | |
im = cv2.warpAffine( | |
im, M[:2], dsize=(width, height), borderValue=(114, 114, 114) | |
) | |
# Visualize | |
# import matplotlib.pyplot as plt | |
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel() | |
# ax[0].imshow(im[:, :, ::-1]) # base | |
# ax[1].imshow(im2[:, :, ::-1]) # warped | |
# Transform label coordinates | |
n = len(targets) | |
if n: | |
use_segments = any(x.any() for x in segments) | |
new = np.zeros((n, 4)) | |
if use_segments: # warp segments | |
segments = resample_segments(segments) # upsample | |
for i, segment in enumerate(segments): | |
xy = np.ones((len(segment), 3)) | |
xy[:, :2] = segment | |
xy = xy @ M.T # transform | |
xy = ( | |
xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] | |
) # perspective rescale or affine | |
# clip | |
new[i] = segment2box(xy, width, height) | |
else: # warp boxes | |
xy = np.ones((n * 4, 3)) | |
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape( | |
n * 4, 2 | |
) # x1y1, x2y2, x1y2, x2y1 | |
xy = xy @ M.T # transform | |
xy = ( | |
xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] | |
).reshape( | |
n, 8 | |
) # perspective rescale or affine | |
# create new boxes | |
x = xy[:, [0, 2, 4, 6]] | |
y = xy[:, [1, 3, 5, 7]] | |
new = ( | |
np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))) | |
.reshape(4, n) | |
.T | |
) | |
# clip | |
new[:, [0, 2]] = new[:, [0, 2]].clip(0, width) | |
new[:, [1, 3]] = new[:, [1, 3]].clip(0, height) | |
# filter candidates | |
i = box_candidates( | |
box1=targets[:, 1:5].T * s, | |
box2=new.T, | |
area_thr=0.01 if use_segments else 0.10, | |
) | |
targets = targets[i] | |
targets[:, 1:5] = new[i] | |
return im, targets | |
def copy_paste(im, labels, segments, p=0.5): | |
# Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy) | |
n = len(segments) | |
if p and n: | |
h, w, c = im.shape # height, width, channels | |
im_new = np.zeros(im.shape, np.uint8) | |
for j in random.sample(range(n), k=round(p * n)): | |
l, s = labels[j], segments[j] | |
box = w - l[3], l[2], w - l[1], l[4] | |
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area | |
if (ioa < 0.30).all(): # allow 30% obscuration of existing labels | |
labels = np.concatenate((labels, [[l[0], *box]]), 0) | |
segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1)) | |
cv2.drawContours( | |
im_new, | |
[segments[j].astype(np.int32)], | |
-1, | |
(1, 1, 1), | |
cv2.FILLED, | |
) | |
result = cv2.flip(im, 1) # augment segments (flip left-right) | |
i = cv2.flip(im_new, 1).astype(bool) | |
im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug | |
return im, labels, segments | |
def cutout(im, labels, p=0.5): | |
# Applies image cutout augmentation https://arxiv.org/abs/1708.04552 | |
if random.random() < p: | |
h, w = im.shape[:2] | |
scales = ( | |
[0.5] * 1 | |
+ [0.25] * 2 | |
+ [0.125] * 4 | |
+ [0.0625] * 8 | |
+ [0.03125] * 16 | |
) # image size fraction | |
for s in scales: | |
mask_h = random.randint(1, int(h * s)) # create random masks | |
mask_w = random.randint(1, int(w * s)) | |
# box | |
xmin = max(0, random.randint(0, w) - mask_w // 2) | |
ymin = max(0, random.randint(0, h) - mask_h // 2) | |
xmax = min(w, xmin + mask_w) | |
ymax = min(h, ymin + mask_h) | |
# apply random color mask | |
im[ymin:ymax, xmin:xmax] = [ | |
random.randint(64, 191) for _ in range(3) | |
] | |
# return unobscured labels | |
if len(labels) and s > 0.03: | |
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32) | |
ioa = bbox_ioa( | |
box, xywhn2xyxy(labels[:, 1:5], w, h) | |
) # intersection over area | |
labels = labels[ioa < 0.60] # remove >60% obscured labels | |
return labels | |
def mixup(im, labels, im2, labels2): | |
# Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf | |
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0 | |
im = (im * r + im2 * (1 - r)).astype(np.uint8) | |
labels = np.concatenate((labels, labels2), 0) | |
return im, labels | |
def box_candidates( | |
box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16 | |
): # box1(4,n), box2(4,n) | |
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio | |
w1, h1 = box1[2] - box1[0], box1[3] - box1[1] | |
w2, h2 = box2[2] - box2[0], box2[3] - box2[1] | |
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio | |
return ( | |
(w2 > wh_thr) | |
& (h2 > wh_thr) | |
& (w2 * h2 / (w1 * h1 + eps) > area_thr) | |
& (ar < ar_thr) | |
) # candidates | |
def classify_albumentations( | |
augment=True, | |
size=224, | |
scale=(0.08, 1.0), | |
ratio=(0.75, 1.0 / 0.75), # 0.75, 1.33 | |
hflip=0.5, | |
vflip=0.0, | |
jitter=0.4, | |
mean=IMAGENET_MEAN, | |
std=IMAGENET_STD, | |
auto_aug=False, | |
): | |
# YOLOv5 classification Albumentations (optional, only used if package is installed) | |
prefix = colorstr("albumentations: ") | |
try: | |
import albumentations as A | |
from albumentations.pytorch import ToTensorV2 | |
check_version(A.__version__, "1.0.3", hard=True) # version requirement | |
if augment: # Resize and crop | |
T = [ | |
A.RandomResizedCrop( | |
height=size, width=size, scale=scale, ratio=ratio | |
) | |
] | |
if auto_aug: | |
# TODO: implement AugMix, AutoAug & RandAug in albumentation | |
LOGGER.info( | |
f"{prefix}auto augmentations are currently not supported" | |
) | |
else: | |
if hflip > 0: | |
T += [A.HorizontalFlip(p=hflip)] | |
if vflip > 0: | |
T += [A.VerticalFlip(p=vflip)] | |
if jitter > 0: | |
color_jitter = ( | |
float(jitter), | |
) * 3 # repeat value for brightness, contrast, satuaration, 0 hue | |
T += [A.ColorJitter(*color_jitter, 0)] | |
else: # Use fixed crop for eval set (reproducibility) | |
T = [ | |
A.SmallestMaxSize(max_size=size), | |
A.CenterCrop(height=size, width=size), | |
] | |
T += [ | |
A.Normalize(mean=mean, std=std), | |
ToTensorV2(), | |
] # Normalize and convert to Tensor | |
LOGGER.info( | |
prefix | |
+ ", ".join( | |
f"{x}".replace("always_apply=False, ", "") for x in T if x.p | |
) | |
) | |
return A.Compose(T) | |
except ImportError: # package not installed, skip | |
LOGGER.warning( | |
f"{prefix}⚠️ not found, install with `pip install albumentations` (recommended)" | |
) | |
except Exception as e: | |
LOGGER.info(f"{prefix}{e}") | |
def classify_transforms(size=224): | |
# Transforms to apply if albumentations not installed | |
assert isinstance( | |
size, int | |
), f"ERROR: classify_transforms size {size} must be integer, not (list, tuple)" | |
# T.Compose([T.ToTensor(), T.Resize(size), T.CenterCrop(size), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)]) | |
return T.Compose( | |
[ | |
CenterCrop(size), | |
ToTensor(), | |
T.Normalize(IMAGENET_MEAN, IMAGENET_STD), | |
] | |
) | |
class LetterBox: | |
# YOLOv5 LetterBox class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()]) | |
def __init__(self, size=(640, 640), auto=False, stride=32): | |
super().__init__() | |
self.h, self.w = (size, size) if isinstance(size, int) else size | |
self.auto = auto # pass max size integer, automatically solve for short side using stride | |
self.stride = stride # used with auto | |
def __call__(self, im): # im = np.array HWC | |
imh, imw = im.shape[:2] | |
r = min(self.h / imh, self.w / imw) # ratio of new/old | |
h, w = round(imh * r), round(imw * r) # resized image | |
hs, ws = ( | |
math.ceil(x / self.stride) * self.stride for x in (h, w) | |
) if self.auto else self.h, self.w | |
top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1) | |
im_out = np.full((self.h, self.w, 3), 114, dtype=im.dtype) | |
im_out[top : top + h, left : left + w] = cv2.resize( | |
im, (w, h), interpolation=cv2.INTER_LINEAR | |
) | |
return im_out | |
class CenterCrop: | |
# YOLOv5 CenterCrop class for image preprocessing, i.e. T.Compose([CenterCrop(size), ToTensor()]) | |
def __init__(self, size=640): | |
super().__init__() | |
self.h, self.w = (size, size) if isinstance(size, int) else size | |
def __call__(self, im): # im = np.array HWC | |
imh, imw = im.shape[:2] | |
m = min(imh, imw) # min dimension | |
top, left = (imh - m) // 2, (imw - m) // 2 | |
return cv2.resize( | |
im[top : top + m, left : left + m], | |
(self.w, self.h), | |
interpolation=cv2.INTER_LINEAR, | |
) | |
class ToTensor: | |
# YOLOv5 ToTensor class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()]) | |
def __init__(self, half=False): | |
super().__init__() | |
self.half = half | |
def __call__(self, im): # im = np.array HWC in BGR order | |
im = np.ascontiguousarray( | |
im.transpose((2, 0, 1))[::-1] | |
) # HWC to CHW -> BGR to RGB -> contiguous | |
im = torch.from_numpy(im) # to torch | |
im = im.half() if self.half else im.float() # uint8 to fp16/32 | |
im /= 255.0 # 0-255 to 0.0-1.0 | |
return im | |