Spaces:
Runtime error
Runtime error
abhi001vj
commited on
Commit
•
2c560b7
1
Parent(s):
c98aa7a
added packages for linux
Browse files- packages.txt +2 -0
- search.py +60 -0
packages.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
poppler-utils
|
2 |
+
xpdf
|
search.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
import pinecone
|
4 |
+
index_name = "abstractive-question-answering"
|
5 |
+
|
6 |
+
# check if the abstractive-question-answering index exists
|
7 |
+
if index_name not in pinecone.list_indexes():
|
8 |
+
# create the index if it does not exist
|
9 |
+
pinecone.create_index(
|
10 |
+
index_name,
|
11 |
+
dimension=768,
|
12 |
+
metric="cosine"
|
13 |
+
)
|
14 |
+
|
15 |
+
# connect to abstractive-question-answering index we created
|
16 |
+
index = pinecone.Index(index_name)
|
17 |
+
|
18 |
+
# we will use batches of 64
|
19 |
+
batch_size = 64
|
20 |
+
|
21 |
+
for i in tqdm(range(0, len(df), batch_size)):
|
22 |
+
# find end of batch
|
23 |
+
i_end = min(i+batch_size, len(df))
|
24 |
+
# extract batch
|
25 |
+
batch = df.iloc[i:i_end]
|
26 |
+
# generate embeddings for batch
|
27 |
+
emb = retriever.encode(batch["passage_text"].tolist()).tolist()
|
28 |
+
# get metadata
|
29 |
+
meta = batch.to_dict(orient="records")
|
30 |
+
# create unique IDs
|
31 |
+
ids = [f"{idx}" for idx in range(i, i_end)]
|
32 |
+
# add all to upsert list
|
33 |
+
to_upsert = list(zip(ids, emb, meta))
|
34 |
+
# upsert/insert these records to pinecone
|
35 |
+
_ = index.upsert(vectors=to_upsert)
|
36 |
+
|
37 |
+
# check that we have all vectors in index
|
38 |
+
index.describe_index_stats()
|
39 |
+
|
40 |
+
# from transformers import BartTokenizer, BartForConditionalGeneration
|
41 |
+
|
42 |
+
# # load bart tokenizer and model from huggingface
|
43 |
+
# tokenizer = BartTokenizer.from_pretrained('vblagoje/bart_lfqa')
|
44 |
+
# generator = BartForConditionalGeneration.from_pretrained('vblagoje/bart_lfqa')
|
45 |
+
|
46 |
+
# def query_pinecone(query, top_k):
|
47 |
+
# # generate embeddings for the query
|
48 |
+
# xq = retriever.encode([query]).tolist()
|
49 |
+
# # search pinecone index for context passage with the answer
|
50 |
+
# xc = index.query(xq, top_k=top_k, include_metadata=True)
|
51 |
+
# return xc
|
52 |
+
|
53 |
+
# def format_query(query, context):
|
54 |
+
# # extract passage_text from Pinecone search result and add the tag
|
55 |
+
# context = [f" {m['metadata']['passage_text']}" for m in context]
|
56 |
+
# # concatinate all context passages
|
57 |
+
# context = " ".join(context)
|
58 |
+
# # contcatinate the query and context passages
|
59 |
+
# query = f"question: {query} context: {context}"
|
60 |
+
# return query
|