haystack_QA / app.py
abhi001vj
Fixed the pinecone retrieval issue
1d3f9ab
raw
history blame
11.5 kB
import json
import logging
import os
import shutil
import sys
import uuid
from json import JSONDecodeError
from pathlib import Path
from typing import List, Optional
import pandas as pd
import pinecone
import streamlit as st
from annotated_text import annotation
from haystack import BaseComponent, Document
from haystack.document_stores import PineconeDocumentStore
from haystack.nodes import (
DocxToTextConverter,
EmbeddingRetriever,
FARMReader,
FileTypeClassifier,
PDFToTextConverter,
PreProcessor,
TextConverter,
)
from haystack.pipelines import ExtractiveQAPipeline, Pipeline
from markdown import markdown
from sentence_transformers import SentenceTransformer
class PineconeSearch(BaseComponent):
outgoing_edges = 1
def run(self, query: str, top_k: Optional[int]):
# process the inputs
vector_embedding = emb_model.encode(query).tolist()
response = index.query([vector_embedding], top_k=top_k, include_metadata=True)
docs = [
Document(
content=d["metadata"]["text"],
meta={
"title": d["metadata"]["filename"],
"context": d["metadata"]["text"],
"_split_id": d["metadata"]["_split_id"],
},
)
for d in response["matches"]
]
output = {"documents": docs, "query": query}
return output, "output_1"
def run_batch(self, queries: List[str], top_k: Optional[int]):
return {}, "output_1"
# connect to pinecone environment
pinecone.init(api_key=st.secrets["pinecone_apikey"], environment="us-west1-gcp")
index_name = "qa-demo-fast-384"
# retriever_model = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
retriever_model = "sentence-transformers/multi-qa-MiniLM-L6-cos-v1"
emb_model = SentenceTransformer(retriever_model)
embedding_dim = 384
preprocessor = PreProcessor(
clean_empty_lines=True,
clean_whitespace=True,
clean_header_footer=False,
split_by="word",
split_length=100,
split_respect_sentence_boundary=True,
)
file_type_classifier = FileTypeClassifier()
text_converter = TextConverter()
pdf_converter = PDFToTextConverter()
docx_converter = DocxToTextConverter()
# check if the abstractive-question-answering index exists
if index_name not in pinecone.list_indexes():
# delete the current index and create the new index if it does not exist
for delete_index in pinecone.list_indexes():
pinecone.delete_index(delete_index)
pinecone.create_index(index_name, dimension=embedding_dim, metric="cosine")
# connect to abstractive-question-answering index we created
index = pinecone.Index(index_name)
FILE_UPLOAD_PATH = "./data/uploads/"
os.makedirs(FILE_UPLOAD_PATH, exist_ok=True)
def create_doc_store():
document_store = PineconeDocumentStore(
api_key=st.secrets["pinecone_apikey"],
index=index_name,
similarity="cosine",
embedding_dim=embedding_dim,
)
return document_store
def query(pipe, question, top_k_reader, top_k_retriever):
res = pipe.run(
query=question,
params={"Retriever": {"top_k": top_k_retriever}, "Reader": {"top_k": top_k_reader}},
)
return res
document_store = create_doc_store()
# pipe = create_pipe(document_store)
retriever = EmbeddingRetriever(
document_store=document_store,
embedding_model=retriever_model,
model_format="sentence_transformers",
)
# load the retriever model from huggingface model hub
sentence_encoder = SentenceTransformer(retriever_model)
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=False)
# pipe = ExtractiveQAPipeline(reader, retriever)
# Custom built extractive QA pipeline
pipe = Pipeline()
pipe.add_node(component=PineconeSearch(), name="Retriever", inputs=["Query"])
pipe.add_node(component=reader, name="Reader", inputs=["Retriever"])
indexing_pipeline_with_classification = Pipeline()
indexing_pipeline_with_classification.add_node(
component=file_type_classifier, name="FileTypeClassifier", inputs=["File"]
)
indexing_pipeline_with_classification.add_node(
component=text_converter, name="TextConverter", inputs=["FileTypeClassifier.output_1"]
)
indexing_pipeline_with_classification.add_node(
component=pdf_converter, name="PdfConverter", inputs=["FileTypeClassifier.output_2"]
)
indexing_pipeline_with_classification.add_node(
component=docx_converter, name="DocxConverter", inputs=["FileTypeClassifier.output_4"]
)
indexing_pipeline_with_classification.add_node(
component=preprocessor,
name="Preprocessor",
inputs=["TextConverter", "PdfConverter", "DocxConverter"],
)
def set_state_if_absent(key, value):
if key not in st.session_state:
st.session_state[key] = value
# Adjust to a question that you would like users to see in the search bar when they load the UI:
DEFAULT_QUESTION_AT_STARTUP = os.getenv(
"DEFAULT_QUESTION_AT_STARTUP", "My blog post discusses remote work. Give me statistics."
)
DEFAULT_ANSWER_AT_STARTUP = os.getenv(
"DEFAULT_ANSWER_AT_STARTUP",
"7% more remote workers have been at their current organization for 5 years or fewer",
)
# Sliders
DEFAULT_DOCS_FROM_RETRIEVER = int(os.getenv("DEFAULT_DOCS_FROM_RETRIEVER", "3"))
DEFAULT_NUMBER_OF_ANSWERS = int(os.getenv("DEFAULT_NUMBER_OF_ANSWERS", "3"))
st.set_page_config(
page_title="Haystack Demo", page_icon="https://haystack.deepset.ai/img/HaystackIcon.png"
)
# Persistent state
set_state_if_absent("question", DEFAULT_QUESTION_AT_STARTUP)
set_state_if_absent("answer", DEFAULT_ANSWER_AT_STARTUP)
set_state_if_absent("results", None)
# Small callback to reset the interface in case the text of the question changes
def reset_results(*args):
st.session_state.answer = None
st.session_state.results = None
st.session_state.raw_json = None
# Title
st.write("# Haystack Search Demo")
st.markdown(
"""
This demo takes its data from two sample data csv with statistics on various topics. \n
Ask any question on this topic and see if Haystack can find the correct answer to your query! \n
*Note: do not use keywords, but full-fledged questions.* The demo is not optimized to deal with keyword queries and might misunderstand you.
""",
unsafe_allow_html=True,
)
# Sidebar
st.sidebar.header("Options")
st.sidebar.write("## File Upload:")
data_files = st.sidebar.file_uploader(
"upload", type=["pdf", "txt", "docx"], accept_multiple_files=True, label_visibility="hidden"
)
ALL_FILES = []
META_DATA = []
for data_file in data_files:
# Upload file
if data_file:
file_path = Path(FILE_UPLOAD_PATH) / f"{uuid.uuid4().hex}_{data_file.name}"
with open(file_path, "wb") as f:
f.write(data_file.getbuffer())
ALL_FILES.append(file_path)
st.sidebar.write(str(data_file.name) + "    βœ… ")
META_DATA.append({"filename": data_file.name})
data_files = []
if len(ALL_FILES) > 0:
# document_store.update_embeddings(retriever, update_existing_embeddings=False)
docs = indexing_pipeline_with_classification.run(file_paths=ALL_FILES, meta=META_DATA)[
"documents"
]
index_name = "qa_demo"
# we will use batches of 64
batch_size = 128
# docs = docs['documents']
# with st.spinner(
# "🧠    Performing indexing of uplaoded documents... \n "
# ):
my_bar = st.progress(0)
upload_count = 0
for i in range(0, len(docs), batch_size):
# find end of batch
i_end = min(i + batch_size, len(docs))
# extract batch
batch = [doc.content for doc in docs[i:i_end]]
# generate embeddings for batch
emb = sentence_encoder.encode(batch).tolist()
# get metadata
# meta = [doc.meta for doc in docs[i:i_end]]
meta = []
for doc in docs[i:i_end]:
meta_dict = doc.meta
meta_dict["text"] = doc.content
meta.append(meta_dict)
# create unique IDs
ids = [doc.id for doc in docs[i:i_end]]
# add all to upsert list
to_upsert = list(zip(ids, emb, meta))
# upsert/insert these records to pinecone
_ = index.upsert(vectors=to_upsert)
upload_count += batch_size
upload_percentage = min(int((upload_count / len(docs)) * 100), 100)
my_bar.progress(upload_percentage)
top_k_reader = st.sidebar.slider(
"Max. number of answers",
min_value=1,
max_value=10,
value=DEFAULT_NUMBER_OF_ANSWERS,
step=1,
on_change=reset_results,
)
top_k_retriever = st.sidebar.slider(
"Max. number of documents from retriever",
min_value=1,
max_value=10,
value=DEFAULT_DOCS_FROM_RETRIEVER,
step=1,
on_change=reset_results,
)
# data_files = st.file_uploader(
# "upload", type=["csv"], accept_multiple_files=True, label_visibility="hidden"
# )
# for data_file in data_files:
# # Upload file
# if data_file:
# raw_json = upload_doc(data_file)
question = st.text_input(
value=st.session_state.question,
max_chars=100,
on_change=reset_results,
label="question",
label_visibility="hidden",
)
col1, col2 = st.columns(2)
col1.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True)
col2.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True)
# Run button
run_pressed = col1.button("Run")
if run_pressed:
run_query = run_pressed or question != st.session_state.question
# Get results for query
if run_query and question:
reset_results()
st.session_state.question = question
with st.spinner("🧠 &nbsp;&nbsp; Performing neural search on documents... \n "):
try:
st.session_state.results = query(
pipe, question, top_k_reader=top_k_reader, top_k_retriever=top_k_retriever
)
except JSONDecodeError as je:
st.error(
"πŸ‘“ &nbsp;&nbsp; An error occurred reading the results. Is the document store working?"
)
except Exception as e:
logging.exception(e)
if "The server is busy processing requests" in str(e) or "503" in str(e):
st.error("πŸ§‘β€πŸŒΎ &nbsp;&nbsp; All our workers are busy! Try again later.")
else:
st.error(f"🐞 &nbsp;&nbsp; An error occurred during the request. {str(e)}")
if st.session_state.results:
st.write("## Results:")
for count, result in enumerate(st.session_state.results["answers"]):
answer, context = result.answer, result.context
start_idx = context.find(answer)
end_idx = start_idx + len(answer)
# Hack due to this bug: https://github.com/streamlit/streamlit/issues/3190
try:
filename = result.meta["title"]
st.write(
markdown(
f'From file: {filename} \n {context[:start_idx] } {str(annotation(answer, "ANSWER", "#8ef"))} {context[end_idx:]} \n '
),
unsafe_allow_html=True,
)
except:
filename = result.meta.get("filename", "")
st.write(
markdown(
f'From file: {filename} \n {context[:start_idx] } {str(annotation(answer, "ANSWER", "#8ef"))} {context[end_idx:]} \n '
),
unsafe_allow_html=True,
)