imagee / app.py
Abhilash015's picture
Create app.py
1e5da8c verified
raw
history blame contribute delete
553 Bytes
from transformers import pipeline
import gradio as gr
from PIL import Image
import numpy as np
# Load the image captioning pipeline
pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
def fun2(image):
# Convert input image (which may be a NumPy array) to PIL Image
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
ans = pipe(image)
return ans[0]['generated_text']
# Set up Gradio interface
obj4 = gr.Interface(fn=fun2, inputs="image", outputs="text")
obj4.launch(debug=True)