Spaces:
Sleeping
Sleeping
# imports and class names setup | |
import gradio as gr | |
import os | |
import torch | |
from model import create_effnetb2_model | |
from timeit import default_timer as timer | |
from typing import Tuple, Dict | |
# setup class names | |
with open("class_names.txt", 'r') as f: | |
class_names = [food_name.strip() for food_name in f.readlines()] | |
# Model and transforms preparation | |
# create model | |
effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=101) | |
# load saved weights | |
effnetb2.load_state_dict( | |
torch.load(f='09_pretrained_effnetb2_feature_extractor_food101_20_percent.pth', | |
map_location=torch.device('cpu')) | |
) | |
# prediction functions | |
# create predict functions | |
def predict(img) -> Tuple[Dict, float]: | |
# start the timer | |
start_time = timer() | |
# transform the image and add the batch dimension | |
img = effnetb2_transforms(img).unsqueeze(0) | |
# put the model into evaluation mode and turn on the inference mode | |
effnetb2.eval() | |
with torch.inference_mode(): | |
# pass the transformed image through the model and turn the prediction | |
pred_probs = torch.softmax(effnetb2(img), dim=1) | |
# create prediction label and probabilities dictionary (necessary for gradio) | |
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} | |
# calculate the prediction time | |
pred_time = round(timer() - start_time, 5) | |
# return the prediction dictionary | |
return pred_labels_and_probs, pred_time | |
# gradio app | |
# create title, description and article string | |
title = 'Foodvision BIG' | |
description = 'An EfficientNetB2 feature extractor computer vision model to classifiy Food101 datasets images' | |
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)." | |
# create exmaple list from example dictionary | |
example_list = [['examples/'+example] for example in os.listdir("examples")] | |
# create gradio interface | |
demo = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type='pil'), | |
outputs=[ | |
gr.Label(num_top_classes=5, label='Predictions'), | |
gr.Number(label='Prediction time(s)') | |
], | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article | |
) | |
# Launch the app | |
demo.launch() | |