Foodvision_Big / app.py
Abhi-lung's picture
Update app.py
27c1480 verified
# imports and class names setup
import gradio as gr
import os
import torch
from model import create_effnetb2_model
from timeit import default_timer as timer
from typing import Tuple, Dict
# setup class names
with open("class_names.txt", 'r') as f:
class_names = [food_name.strip() for food_name in f.readlines()]
# Model and transforms preparation
# create model
effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=101)
# load saved weights
effnetb2.load_state_dict(
torch.load(f='09_pretrained_effnetb2_feature_extractor_food101_20_percent.pth',
map_location=torch.device('cpu'))
)
# prediction functions
# create predict functions
def predict(img) -> Tuple[Dict, float]:
# start the timer
start_time = timer()
# transform the image and add the batch dimension
img = effnetb2_transforms(img).unsqueeze(0)
# put the model into evaluation mode and turn on the inference mode
effnetb2.eval()
with torch.inference_mode():
# pass the transformed image through the model and turn the prediction
pred_probs = torch.softmax(effnetb2(img), dim=1)
# create prediction label and probabilities dictionary (necessary for gradio)
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
# calculate the prediction time
pred_time = round(timer() - start_time, 5)
# return the prediction dictionary
return pred_labels_and_probs, pred_time
# gradio app
# create title, description and article string
title = 'Foodvision BIG'
description = 'An EfficientNetB2 feature extractor computer vision model to classifiy Food101 datasets images'
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
# create exmaple list from example dictionary
example_list = [['examples/'+example] for example in os.listdir("examples")]
# create gradio interface
demo = gr.Interface(
fn=predict,
inputs=gr.Image(type='pil'),
outputs=[
gr.Label(num_top_classes=5, label='Predictions'),
gr.Number(label='Prediction time(s)')
],
examples=example_list,
title=title,
description=description,
article=article
)
# Launch the app
demo.launch()