Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # or AutoModelForCausalLM, etc. | |
| # Replace this with the actual path to your model on HF hub | |
| MODEL_NAME = "AbdulrahmanCS/my_finetuned_model" | |
| # Load the tokenizer and model | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
| model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME) | |
| # You can wrap it in a pipeline, or do manual model calls. | |
| # For demonstration, let’s create a small function that does text generation: | |
| def generate_interview_questions(prompt): | |
| inputs = tokenizer(prompt, return_tensors="pt") | |
| outputs = model.generate( | |
| **inputs, | |
| max_length=128, | |
| num_beams=4, | |
| num_return_sequences=1, | |
| ) | |
| return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # Now define the Gradio interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# My Fine-Tuned Interview Question Generation Model") | |
| with gr.Row(): | |
| input_text = gr.Textbox(label="Enter prompt or context", lines=3) | |
| output_text = gr.Textbox(label="Generated question(s)") | |
| generate_button = gr.Button("Generate") | |
| generate_button.click(fn=generate_interview_questions, inputs=input_text, outputs=output_text) | |
| if __name__ == "__main__": | |
| demo.launch() | |