Spaces:
Configuration error
Configuration error
import cv2 | |
import numpy as np | |
import torch | |
def compute_increased_bbox(bbox, increase_area, preserve_aspect=True): | |
left, top, right, bot = bbox | |
width = right - left | |
height = bot - top | |
if preserve_aspect: | |
width_increase = max(increase_area, ((1 + 2 * increase_area) * height - width) / (2 * width)) | |
height_increase = max(increase_area, ((1 + 2 * increase_area) * width - height) / (2 * height)) | |
else: | |
width_increase = height_increase = increase_area | |
left = int(left - width_increase * width) | |
top = int(top - height_increase * height) | |
right = int(right + width_increase * width) | |
bot = int(bot + height_increase * height) | |
return (left, top, right, bot) | |
def get_valid_bboxes(bboxes, h, w): | |
left = max(bboxes[0], 0) | |
top = max(bboxes[1], 0) | |
right = min(bboxes[2], w) | |
bottom = min(bboxes[3], h) | |
return (left, top, right, bottom) | |
def align_crop_face_landmarks(img, | |
landmarks, | |
output_size, | |
transform_size=None, | |
enable_padding=True, | |
return_inverse_affine=False, | |
shrink_ratio=(1, 1)): | |
"""Align and crop face with landmarks. | |
The output_size and transform_size are based on width. The height is | |
adjusted based on shrink_ratio_h/shring_ration_w. | |
Modified from: | |
https://github.com/NVlabs/ffhq-dataset/blob/master/download_ffhq.py | |
Args: | |
img (Numpy array): Input image. | |
landmarks (Numpy array): 5 or 68 or 98 landmarks. | |
output_size (int): Output face size. | |
transform_size (ing): Transform size. Usually the four time of | |
output_size. | |
enable_padding (float): Default: True. | |
shrink_ratio (float | tuple[float] | list[float]): Shring the whole | |
face for height and width (crop larger area). Default: (1, 1). | |
Returns: | |
(Numpy array): Cropped face. | |
""" | |
lm_type = 'retinaface_5' # Options: dlib_5, retinaface_5 | |
if isinstance(shrink_ratio, (float, int)): | |
shrink_ratio = (shrink_ratio, shrink_ratio) | |
if transform_size is None: | |
transform_size = output_size * 4 | |
# Parse landmarks | |
lm = np.array(landmarks) | |
if lm.shape[0] == 5 and lm_type == 'retinaface_5': | |
eye_left = lm[0] | |
eye_right = lm[1] | |
mouth_avg = (lm[3] + lm[4]) * 0.5 | |
elif lm.shape[0] == 5 and lm_type == 'dlib_5': | |
lm_eye_left = lm[2:4] | |
lm_eye_right = lm[0:2] | |
eye_left = np.mean(lm_eye_left, axis=0) | |
eye_right = np.mean(lm_eye_right, axis=0) | |
mouth_avg = lm[4] | |
elif lm.shape[0] == 68: | |
lm_eye_left = lm[36:42] | |
lm_eye_right = lm[42:48] | |
eye_left = np.mean(lm_eye_left, axis=0) | |
eye_right = np.mean(lm_eye_right, axis=0) | |
mouth_avg = (lm[48] + lm[54]) * 0.5 | |
elif lm.shape[0] == 98: | |
lm_eye_left = lm[60:68] | |
lm_eye_right = lm[68:76] | |
eye_left = np.mean(lm_eye_left, axis=0) | |
eye_right = np.mean(lm_eye_right, axis=0) | |
mouth_avg = (lm[76] + lm[82]) * 0.5 | |
eye_avg = (eye_left + eye_right) * 0.5 | |
eye_to_eye = eye_right - eye_left | |
eye_to_mouth = mouth_avg - eye_avg | |
# Get the oriented crop rectangle | |
# x: half width of the oriented crop rectangle | |
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] | |
# - np.flipud(eye_to_mouth) * [-1, 1]: rotate 90 clockwise | |
# norm with the hypotenuse: get the direction | |
x /= np.hypot(*x) # get the hypotenuse of a right triangle | |
rect_scale = 1 # TODO: you can edit it to get larger rect | |
x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale) | |
# y: half height of the oriented crop rectangle | |
y = np.flipud(x) * [-1, 1] | |
x *= shrink_ratio[1] # width | |
y *= shrink_ratio[0] # height | |
# c: center | |
c = eye_avg + eye_to_mouth * 0.1 | |
# quad: (left_top, left_bottom, right_bottom, right_top) | |
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) | |
# qsize: side length of the square | |
qsize = np.hypot(*x) * 2 | |
quad_ori = np.copy(quad) | |
# Shrink, for large face | |
# TODO: do we really need shrink | |
shrink = int(np.floor(qsize / output_size * 0.5)) | |
if shrink > 1: | |
h, w = img.shape[0:2] | |
rsize = (int(np.rint(float(w) / shrink)), int(np.rint(float(h) / shrink))) | |
img = cv2.resize(img, rsize, interpolation=cv2.INTER_AREA) | |
quad /= shrink | |
qsize /= shrink | |
# Crop | |
h, w = img.shape[0:2] | |
border = max(int(np.rint(qsize * 0.1)), 3) | |
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), | |
int(np.ceil(max(quad[:, 1])))) | |
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, w), min(crop[3] + border, h)) | |
if crop[2] - crop[0] < w or crop[3] - crop[1] < h: | |
img = img[crop[1]:crop[3], crop[0]:crop[2], :] | |
quad -= crop[0:2] | |
# Pad | |
# pad: (width_left, height_top, width_right, height_bottom) | |
h, w = img.shape[0:2] | |
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), | |
int(np.ceil(max(quad[:, 1])))) | |
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - w + border, 0), max(pad[3] - h + border, 0)) | |
if enable_padding and max(pad) > border - 4: | |
pad = np.maximum(pad, int(np.rint(qsize * 0.3))) | |
img = np.pad(img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') | |
h, w = img.shape[0:2] | |
y, x, _ = np.ogrid[:h, :w, :1] | |
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], | |
np.float32(w - 1 - x) / pad[2]), | |
1.0 - np.minimum(np.float32(y) / pad[1], | |
np.float32(h - 1 - y) / pad[3])) | |
blur = int(qsize * 0.02) | |
if blur % 2 == 0: | |
blur += 1 | |
blur_img = cv2.boxFilter(img, 0, ksize=(blur, blur)) | |
img = img.astype('float32') | |
img += (blur_img - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) | |
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0) | |
img = np.clip(img, 0, 255) # float32, [0, 255] | |
quad += pad[:2] | |
# Transform use cv2 | |
h_ratio = shrink_ratio[0] / shrink_ratio[1] | |
dst_h, dst_w = int(transform_size * h_ratio), transform_size | |
template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]]) | |
# use cv2.LMEDS method for the equivalence to skimage transform | |
# ref: https://blog.csdn.net/yichxi/article/details/115827338 | |
affine_matrix = cv2.estimateAffinePartial2D(quad, template, method=cv2.LMEDS)[0] | |
cropped_face = cv2.warpAffine( | |
img, affine_matrix, (dst_w, dst_h), borderMode=cv2.BORDER_CONSTANT, borderValue=(135, 133, 132)) # gray | |
if output_size < transform_size: | |
cropped_face = cv2.resize( | |
cropped_face, (output_size, int(output_size * h_ratio)), interpolation=cv2.INTER_LINEAR) | |
if return_inverse_affine: | |
dst_h, dst_w = int(output_size * h_ratio), output_size | |
template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]]) | |
# use cv2.LMEDS method for the equivalence to skimage transform | |
# ref: https://blog.csdn.net/yichxi/article/details/115827338 | |
affine_matrix = cv2.estimateAffinePartial2D( | |
quad_ori, np.array([[0, 0], [0, output_size], [dst_w, dst_h], [dst_w, 0]]), method=cv2.LMEDS)[0] | |
inverse_affine = cv2.invertAffineTransform(affine_matrix) | |
else: | |
inverse_affine = None | |
return cropped_face, inverse_affine | |
def paste_face_back(img, face, inverse_affine): | |
h, w = img.shape[0:2] | |
face_h, face_w = face.shape[0:2] | |
inv_restored = cv2.warpAffine(face, inverse_affine, (w, h)) | |
mask = np.ones((face_h, face_w, 3), dtype=np.float32) | |
inv_mask = cv2.warpAffine(mask, inverse_affine, (w, h)) | |
# remove the black borders | |
inv_mask_erosion = cv2.erode(inv_mask, np.ones((2, 2), np.uint8)) | |
inv_restored_remove_border = inv_mask_erosion * inv_restored | |
total_face_area = np.sum(inv_mask_erosion) // 3 | |
# compute the fusion edge based on the area of face | |
w_edge = int(total_face_area**0.5) // 20 | |
erosion_radius = w_edge * 2 | |
inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8)) | |
blur_size = w_edge * 2 | |
inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0) | |
img = inv_soft_mask * inv_restored_remove_border + (1 - inv_soft_mask) * img | |
# float32, [0, 255] | |
return img | |
if __name__ == '__main__': | |
import os | |
from extras.facexlib.detection import init_detection_model | |
from extras.facexlib.utils.face_restoration_helper import get_largest_face | |
from extras.facexlib.visualization import visualize_detection | |
img_path = '/home/wxt/datasets/ffhq/ffhq_wild/00009.png' | |
img_name = os.splitext(os.path.basename(img_path))[0] | |
# initialize model | |
det_net = init_detection_model('retinaface_resnet50', half=False) | |
img_ori = cv2.imread(img_path) | |
h, w = img_ori.shape[0:2] | |
# if larger than 800, scale it | |
scale = max(h / 800, w / 800) | |
if scale > 1: | |
img = cv2.resize(img_ori, (int(w / scale), int(h / scale)), interpolation=cv2.INTER_LINEAR) | |
with torch.no_grad(): | |
bboxes = det_net.detect_faces(img, 0.97) | |
if scale > 1: | |
bboxes *= scale # the score is incorrect | |
bboxes = get_largest_face(bboxes, h, w)[0] | |
visualize_detection(img_ori, [bboxes], f'tmp/{img_name}_det.png') | |
landmarks = np.array([[bboxes[i], bboxes[i + 1]] for i in range(5, 15, 2)]) | |
cropped_face, inverse_affine = align_crop_face_landmarks( | |
img_ori, | |
landmarks, | |
output_size=512, | |
transform_size=None, | |
enable_padding=True, | |
return_inverse_affine=True, | |
shrink_ratio=(1, 1)) | |
cv2.imwrite(f'tmp/{img_name}_cropeed_face.png', cropped_face) | |
img = paste_face_back(img_ori, cropped_face, inverse_affine) | |
cv2.imwrite(f'tmp/{img_name}_back.png', img) | |