Abdullah-Habib's picture
first commit
20fd36d
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
from torchvision.models._utils import IntermediateLayerGetter as IntermediateLayerGetter
from extras.facexlib.detection.align_trans import get_reference_facial_points, warp_and_crop_face
from extras.facexlib.detection.retinaface_net import FPN, SSH, MobileNetV1, make_bbox_head, make_class_head, make_landmark_head
from extras.facexlib.detection.retinaface_utils import (PriorBox, batched_decode, batched_decode_landm, decode, decode_landm,
py_cpu_nms)
def generate_config(network_name):
cfg_mnet = {
'name': 'mobilenet0.25',
'min_sizes': [[16, 32], [64, 128], [256, 512]],
'steps': [8, 16, 32],
'variance': [0.1, 0.2],
'clip': False,
'loc_weight': 2.0,
'gpu_train': True,
'batch_size': 32,
'ngpu': 1,
'epoch': 250,
'decay1': 190,
'decay2': 220,
'image_size': 640,
'return_layers': {
'stage1': 1,
'stage2': 2,
'stage3': 3
},
'in_channel': 32,
'out_channel': 64
}
cfg_re50 = {
'name': 'Resnet50',
'min_sizes': [[16, 32], [64, 128], [256, 512]],
'steps': [8, 16, 32],
'variance': [0.1, 0.2],
'clip': False,
'loc_weight': 2.0,
'gpu_train': True,
'batch_size': 24,
'ngpu': 4,
'epoch': 100,
'decay1': 70,
'decay2': 90,
'image_size': 840,
'return_layers': {
'layer2': 1,
'layer3': 2,
'layer4': 3
},
'in_channel': 256,
'out_channel': 256
}
if network_name == 'mobile0.25':
return cfg_mnet
elif network_name == 'resnet50':
return cfg_re50
else:
raise NotImplementedError(f'network_name={network_name}')
class RetinaFace(nn.Module):
def __init__(self, network_name='resnet50', half=False, phase='test', device=None):
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device
super(RetinaFace, self).__init__()
self.half_inference = half
cfg = generate_config(network_name)
self.backbone = cfg['name']
self.model_name = f'retinaface_{network_name}'
self.cfg = cfg
self.phase = phase
self.target_size, self.max_size = 1600, 2150
self.resize, self.scale, self.scale1 = 1., None, None
self.mean_tensor = torch.tensor([[[[104.]], [[117.]], [[123.]]]], device=self.device)
self.reference = get_reference_facial_points(default_square=True)
# Build network.
backbone = None
if cfg['name'] == 'mobilenet0.25':
backbone = MobileNetV1()
self.body = IntermediateLayerGetter(backbone, cfg['return_layers'])
elif cfg['name'] == 'Resnet50':
import torchvision.models as models
backbone = models.resnet50(weights=None)
self.body = IntermediateLayerGetter(backbone, cfg['return_layers'])
in_channels_stage2 = cfg['in_channel']
in_channels_list = [
in_channels_stage2 * 2,
in_channels_stage2 * 4,
in_channels_stage2 * 8,
]
out_channels = cfg['out_channel']
self.fpn = FPN(in_channels_list, out_channels)
self.ssh1 = SSH(out_channels, out_channels)
self.ssh2 = SSH(out_channels, out_channels)
self.ssh3 = SSH(out_channels, out_channels)
self.ClassHead = make_class_head(fpn_num=3, inchannels=cfg['out_channel'])
self.BboxHead = make_bbox_head(fpn_num=3, inchannels=cfg['out_channel'])
self.LandmarkHead = make_landmark_head(fpn_num=3, inchannels=cfg['out_channel'])
self.to(self.device)
self.eval()
if self.half_inference:
self.half()
def forward(self, inputs):
out = self.body(inputs)
if self.backbone == 'mobilenet0.25' or self.backbone == 'Resnet50':
out = list(out.values())
# FPN
fpn = self.fpn(out)
# SSH
feature1 = self.ssh1(fpn[0])
feature2 = self.ssh2(fpn[1])
feature3 = self.ssh3(fpn[2])
features = [feature1, feature2, feature3]
bbox_regressions = torch.cat([self.BboxHead[i](feature) for i, feature in enumerate(features)], dim=1)
classifications = torch.cat([self.ClassHead[i](feature) for i, feature in enumerate(features)], dim=1)
tmp = [self.LandmarkHead[i](feature) for i, feature in enumerate(features)]
ldm_regressions = (torch.cat(tmp, dim=1))
if self.phase == 'train':
output = (bbox_regressions, classifications, ldm_regressions)
else:
output = (bbox_regressions, F.softmax(classifications, dim=-1), ldm_regressions)
return output
def __detect_faces(self, inputs):
# get scale
height, width = inputs.shape[2:]
self.scale = torch.tensor([width, height, width, height], dtype=torch.float32, device=self.device)
tmp = [width, height, width, height, width, height, width, height, width, height]
self.scale1 = torch.tensor(tmp, dtype=torch.float32, device=self.device)
# forawrd
inputs = inputs.to(self.device)
if self.half_inference:
inputs = inputs.half()
loc, conf, landmarks = self(inputs)
# get priorbox
priorbox = PriorBox(self.cfg, image_size=inputs.shape[2:])
priors = priorbox.forward().to(self.device)
return loc, conf, landmarks, priors
# single image detection
def transform(self, image, use_origin_size):
# convert to opencv format
if isinstance(image, Image.Image):
image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
image = image.astype(np.float32)
# testing scale
im_size_min = np.min(image.shape[0:2])
im_size_max = np.max(image.shape[0:2])
resize = float(self.target_size) / float(im_size_min)
# prevent bigger axis from being more than max_size
if np.round(resize * im_size_max) > self.max_size:
resize = float(self.max_size) / float(im_size_max)
resize = 1 if use_origin_size else resize
# resize
if resize != 1:
image = cv2.resize(image, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR)
# convert to torch.tensor format
# image -= (104, 117, 123)
image = image.transpose(2, 0, 1)
image = torch.from_numpy(image).unsqueeze(0)
return image, resize
def detect_faces(
self,
image,
conf_threshold=0.8,
nms_threshold=0.4,
use_origin_size=True,
):
image, self.resize = self.transform(image, use_origin_size)
image = image.to(self.device)
if self.half_inference:
image = image.half()
image = image - self.mean_tensor
loc, conf, landmarks, priors = self.__detect_faces(image)
boxes = decode(loc.data.squeeze(0), priors.data, self.cfg['variance'])
boxes = boxes * self.scale / self.resize
boxes = boxes.cpu().numpy()
scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
landmarks = decode_landm(landmarks.squeeze(0), priors, self.cfg['variance'])
landmarks = landmarks * self.scale1 / self.resize
landmarks = landmarks.cpu().numpy()
# ignore low scores
inds = np.where(scores > conf_threshold)[0]
boxes, landmarks, scores = boxes[inds], landmarks[inds], scores[inds]
# sort
order = scores.argsort()[::-1]
boxes, landmarks, scores = boxes[order], landmarks[order], scores[order]
# do NMS
bounding_boxes = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
keep = py_cpu_nms(bounding_boxes, nms_threshold)
bounding_boxes, landmarks = bounding_boxes[keep, :], landmarks[keep]
# self.t['forward_pass'].toc()
# print(self.t['forward_pass'].average_time)
# import sys
# sys.stdout.flush()
return np.concatenate((bounding_boxes, landmarks), axis=1)
def __align_multi(self, image, boxes, landmarks, limit=None):
if len(boxes) < 1:
return [], []
if limit:
boxes = boxes[:limit]
landmarks = landmarks[:limit]
faces = []
for landmark in landmarks:
facial5points = [[landmark[2 * j], landmark[2 * j + 1]] for j in range(5)]
warped_face = warp_and_crop_face(np.array(image), facial5points, self.reference, crop_size=(112, 112))
faces.append(warped_face)
return np.concatenate((boxes, landmarks), axis=1), faces
def align_multi(self, img, conf_threshold=0.8, limit=None):
rlt = self.detect_faces(img, conf_threshold=conf_threshold)
boxes, landmarks = rlt[:, 0:5], rlt[:, 5:]
return self.__align_multi(img, boxes, landmarks, limit)
# batched detection
def batched_transform(self, frames, use_origin_size):
"""
Arguments:
frames: a list of PIL.Image, or torch.Tensor(shape=[n, h, w, c],
type=np.float32, BGR format).
use_origin_size: whether to use origin size.
"""
from_PIL = True if isinstance(frames[0], Image.Image) else False
# convert to opencv format
if from_PIL:
frames = [cv2.cvtColor(np.asarray(frame), cv2.COLOR_RGB2BGR) for frame in frames]
frames = np.asarray(frames, dtype=np.float32)
# testing scale
im_size_min = np.min(frames[0].shape[0:2])
im_size_max = np.max(frames[0].shape[0:2])
resize = float(self.target_size) / float(im_size_min)
# prevent bigger axis from being more than max_size
if np.round(resize * im_size_max) > self.max_size:
resize = float(self.max_size) / float(im_size_max)
resize = 1 if use_origin_size else resize
# resize
if resize != 1:
if not from_PIL:
frames = F.interpolate(frames, scale_factor=resize)
else:
frames = [
cv2.resize(frame, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR)
for frame in frames
]
# convert to torch.tensor format
if not from_PIL:
frames = frames.transpose(1, 2).transpose(1, 3).contiguous()
else:
frames = frames.transpose((0, 3, 1, 2))
frames = torch.from_numpy(frames)
return frames, resize
def batched_detect_faces(self, frames, conf_threshold=0.8, nms_threshold=0.4, use_origin_size=True):
"""
Arguments:
frames: a list of PIL.Image, or np.array(shape=[n, h, w, c],
type=np.uint8, BGR format).
conf_threshold: confidence threshold.
nms_threshold: nms threshold.
use_origin_size: whether to use origin size.
Returns:
final_bounding_boxes: list of np.array ([n_boxes, 5],
type=np.float32).
final_landmarks: list of np.array ([n_boxes, 10], type=np.float32).
"""
# self.t['forward_pass'].tic()
frames, self.resize = self.batched_transform(frames, use_origin_size)
frames = frames.to(self.device)
frames = frames - self.mean_tensor
b_loc, b_conf, b_landmarks, priors = self.__detect_faces(frames)
final_bounding_boxes, final_landmarks = [], []
# decode
priors = priors.unsqueeze(0)
b_loc = batched_decode(b_loc, priors, self.cfg['variance']) * self.scale / self.resize
b_landmarks = batched_decode_landm(b_landmarks, priors, self.cfg['variance']) * self.scale1 / self.resize
b_conf = b_conf[:, :, 1]
# index for selection
b_indice = b_conf > conf_threshold
# concat
b_loc_and_conf = torch.cat((b_loc, b_conf.unsqueeze(-1)), dim=2).float()
for pred, landm, inds in zip(b_loc_and_conf, b_landmarks, b_indice):
# ignore low scores
pred, landm = pred[inds, :], landm[inds, :]
if pred.shape[0] == 0:
final_bounding_boxes.append(np.array([], dtype=np.float32))
final_landmarks.append(np.array([], dtype=np.float32))
continue
# sort
# order = score.argsort(descending=True)
# box, landm, score = box[order], landm[order], score[order]
# to CPU
bounding_boxes, landm = pred.cpu().numpy(), landm.cpu().numpy()
# NMS
keep = py_cpu_nms(bounding_boxes, nms_threshold)
bounding_boxes, landmarks = bounding_boxes[keep, :], landm[keep]
# append
final_bounding_boxes.append(bounding_boxes)
final_landmarks.append(landmarks)
# self.t['forward_pass'].toc(average=True)
# self.batch_time += self.t['forward_pass'].diff
# self.total_frame += len(frames)
# print(self.batch_time / self.total_frame)
return final_bounding_boxes, final_landmarks