TableQA / TableQAGradio.py
Abbasid's picture
Update TableQAGradio.py
b70e9c7
raw
history blame
2.68 kB
#!/usr/bin/env python
# coding: utf-8
# ## Using Gradio to create a simple interface.
#
# Check out the library on [github](https://github.com/gradio-app/gradio-UI) and see the [getting started](https://gradio.app/getting_started.html) page for more demos.
# We'll start with a basic function that greets an input name.
# In[1]:
# get_ipython().system('pip install -q gradio')
# Now we'll wrap this function with a Gradio interface.
# In[2]:
from transformers import pipeline
import pandas as pd
tqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq")
# In[ ]:
tsqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-sqa")
# In[ ]:
mstqa = pipeline(task="table-question-answering", model="microsoft/tapex-large-finetuned-wikisql")
# In[ ]:
mswtqa = pipeline(task="table-question-answering", model="microsoft/tapex-large-finetuned-wtq")
# In[6]:
# table2 = pd.read_excel("/content/Sample.xlsx").astype(str)
# table3 = table2.head(20)
# In[7]:
# table3
# In[ ]:
#t4 = table3.reset_index()
# table4
# In[9]:
query = "what is the highest delta onu rx power?"
query2 = "what is the lowest delta onu rx power?"
query3 = "what is the most frequent login id?"
query4 = "how many rows with nan values are there?"
query5 = "how many S2 values are there"
# In[11]:
# result = tsqa(table=table3, query=query5)["answer"]
# result
# In[13]:
#mstqa(table=table4, query=query1)["answer"]
# In[14]:
# mswtqa(table=table3, query=query5)["answer"]
# In[15]:
def main(filepath, query):
table5 = pd.read_excel(filepath).head(20).astype(str)
result = tsqa(table=table5, query=query)["answer"]
return result
#greet("World")
# In[16]:
import gradio as gr
iface = gr.Interface(
fn=main,
inputs=[
gr.File(type="filepath", label="Upload XLSX file"),
gr.Textbox(type="text", label="Enter text"),
],
outputs=[gr.Textbox(type="text", label="Text Input Output")],
title="Multi-input Processor",
description="Upload an XLSX file and/or enter text, and the processed output will be displayed.",
)
# Launch the Gradio interface
iface.launch()
# In[34]:
import os
import subprocess
# Use subprocess to execute the shell command
subprocess.run(["jupyter", "nbconvert", "--to", "script", "--format", "script", "--output", "/content/", "/content/drive/MyDrive/Colab Notebooks/NEW TableQA-GRADIO: Hello World.ipynb"])
# In[19]:
# get_ipython().system('gradio deploy')
# That's all! Go ahead and open that share link in a new tab. Check out our [getting started](https://gradio.app/getting_started.html) page for more complicated demos.