Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,34 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
import torch
|
|
|
|
|
4 |
import io
|
5 |
|
6 |
# Load the ASR pipeline with Whisper model
|
7 |
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large-v3")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
def transcribe_audio(audio_file):
|
10 |
-
#
|
11 |
-
|
12 |
-
audio = io.BytesIO(audio_bytes)
|
13 |
|
14 |
# Transcribe audio
|
15 |
-
transcription = pipe(
|
16 |
return transcription['text']
|
17 |
|
18 |
# Streamlit UI
|
@@ -22,7 +38,10 @@ st.write("Upload an audio file to transcribe its content into text.")
|
|
22 |
uploaded_file = st.file_uploader("Choose an audio file...", type=["wav", "mp3", "flac"])
|
23 |
|
24 |
if uploaded_file is not None:
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
import torch
|
4 |
+
import numpy as np
|
5 |
+
from pydub import AudioSegment
|
6 |
import io
|
7 |
|
8 |
# Load the ASR pipeline with Whisper model
|
9 |
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large-v3")
|
10 |
|
11 |
+
def audio_to_numpy(audio_file):
|
12 |
+
# Load the audio file into an AudioSegment object
|
13 |
+
audio = AudioSegment.from_file(io.BytesIO(audio_file.read()))
|
14 |
+
|
15 |
+
# Convert audio to mono and set sample rate to 16000
|
16 |
+
audio = audio.set_channels(1).set_frame_rate(16000)
|
17 |
+
|
18 |
+
# Convert to numpy array
|
19 |
+
samples = np.array(audio.get_array_of_samples())
|
20 |
+
|
21 |
+
# Normalize the data
|
22 |
+
samples = samples.astype(np.float32) / np.iinfo(audio.sample_width * 8).max
|
23 |
+
|
24 |
+
return samples
|
25 |
+
|
26 |
def transcribe_audio(audio_file):
|
27 |
+
# Convert audio bytes to numpy array
|
28 |
+
audio_numpy = audio_to_numpy(audio_file)
|
|
|
29 |
|
30 |
# Transcribe audio
|
31 |
+
transcription = pipe(audio_numpy)
|
32 |
return transcription['text']
|
33 |
|
34 |
# Streamlit UI
|
|
|
38 |
uploaded_file = st.file_uploader("Choose an audio file...", type=["wav", "mp3", "flac"])
|
39 |
|
40 |
if uploaded_file is not None:
|
41 |
+
try:
|
42 |
+
with st.spinner("Transcribing..."):
|
43 |
+
text = transcribe_audio(uploaded_file)
|
44 |
+
st.subheader("Transcription Result:")
|
45 |
+
st.write(text)
|
46 |
+
except Exception as e:
|
47 |
+
st.error(f"An error occurred: {e}")
|