Aashiue's picture
Create app.py
56ead55
raw
history blame
6.48 kB
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
%matplotlib inline
import matplotlib
matplotlib.rcParams["figure.figsize"] = (20, 10)
path = '/content/bengaluru_house_prices.csv'
df = pd.read_csv(path)
df.head()
df.shape
df.groupby('area_type')['area_type'].agg('count')
df = df.drop(['area_type','society','balcony','availability'], axis = 'columns')
df.head()
df.isnull().sum()
df=df.dropna()
df.head()
df.shape
df.isnull().sum()
df['size'].unique()
df['BHK'] = df['size'].apply(lambda x: int(x.split(' ')[0]))
df.head()
df['BHK'].unique()
df['total_sqft'].unique()
def isfloat(x):
token = x.split('-')
if len(token)==2:
return (float(token[0])+float(token[1]))/2
try:
return float(x)
except:
return None
isfloat('2100 - 2600')
df['total_sqft'] = df['total_sqft'].apply(isfloat)
df.head(31)
df=df.drop(['size'], axis = 'columns')
df.head(31)
df.dtypes
df['price_per_sqft'] = df['price']*100000/df['total_sqft']
df.head()
len(df.location.unique())
df.location = df.location.apply(lambda x: x.strip())
loc_stats = df.groupby('location')['location'].agg('count').sort_values(ascending = False)
loc_stats
len(loc_stats[loc_stats <= 10])
loc_stats_ten = loc_stats[loc_stats<=10]
loc_stats_ten
df.location = df.location.apply(lambda x: 'other' if x in loc_stats_ten else x)
len(df.location.unique());
df.head(10)
df[df.total_sqft/df.BHK < 300].head()
df = df[~(df.total_sqft/df.BHK < 300)]
df.price_per_sqft.describe()
def rem_out(df):
df_out = pd.DataFrame()
for key, subdf in df.groupby('location'):
mu = np.mean(subdf.price_per_sqft)
std = np.std(subdf.price_per_sqft)
dft = subdf[(subdf.price_per_sqft > (mu-std)) & (subdf.price_per_sqft <= (mu+std))]
df_out = pd.concat([df_out, dft], ignore_index = True)
return df_out
df = rem_out(df);
df.shape
df.head()
def plot_scatter(df, location):
bhk2 = df[(df.location==location) & (df.BHK==2)]
bhk3 = df[(df.location==location) & (df.BHK==3)]
matplotlib.rcParams['figure.figsize'] = (15, 10)
plt.scatter(bhk2.total_sqft, bhk2.price, color = 'red', label = '2 BHK', s=50)
plt.scatter(bhk3.total_sqft, bhk3.price, color = 'blue', label = '3 BHK', s=50)
plt.xlabel('Total sq feet area')
plt.ylabel('price per sq feet area')
plt.legend()
plot_scatter(df, "Hebbal")
df.head()
def remove_outlier(df):
exclude = np.array([])
for location, location_df in df.groupby('location'):
bhk_stat = {}
for BHK, bhk_df in location_df.groupby('BHK'):
bhk_stat[BHK] = {
'mean' : np.mean(bhk_df.price_per_sqft),
'std' : np.std(bhk_df.price_per_sqft),
'count' : bhk_df.shape[0]
}
# print(bhk_stat)
for BHK, bhk_df in location_df.groupby('BHK'):
stat = bhk_stat.get(BHK-1)
# print(stat)
if stat and stat['count']>5:
exclude = np.append(exclude, bhk_df[bhk_df.price_per_sqft<(stat['mean'])].index.values)
return df.drop(exclude, axis='index')
df = remove_outlier(df)
df.shape
plot_scatter(df, "Hebbal")
matplotlib.rcParams["figure.figsize"] = (20,10)
plt.hist(df.price_per_sqft, rwidth=0.8)
plt.xlabel("price per sq feet")
plt.ylabel("count")
df.bath.unique()
plt.hist(df.bath, rwidth = 0.5)
plt.xlabel('no. of bathrooms')
plt.ylabel('count')
df[df.bath > df.BHK+2]
df = df[df.bath < df.BHK+2]
df.shape
df = df.drop(['price_per_sqft'], axis = 'columns')
df.head(10)
dummies = pd.get_dummies(df.location)
dummies.head()
df = pd.concat([df, dummies.drop('other', axis = 'columns')], axis = 'columns')
df.head()
df = df.drop('location', axis = 'columns')
df.head()
df.shape
x = df.drop('price', axis = 'columns')
x.head()
y = df.price
y.head()
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state = 10)
from sklearn.linear_model import LinearRegression
lr_clf = LinearRegression()
lr_clf.fit(X_train, y_train)
lr_clf.score(X_test, y_test)
from sklearn.model_selection import ShuffleSplit
from sklearn.model_selection import cross_val_score
cv = ShuffleSplit(n_splits = 5, test_size = 0.2, random_state = 10)
cross_val_score(LinearRegression(), x, y, cv = cv)
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import Lasso
from sklearn.tree import DecisionTreeRegressor
def find_best_model(x, y):
algos = {
'linear_reg' : {
'model' : LinearRegression(),
'params' : {
'fit_intercept': [True, False],
'copy_X': [True, False],
'n_jobs': [None, -1],
'positive': [True, False]
}
},
'lasso' : {
'model' : Lasso(),
'params' : {
'alpha' : [1,2],
'selection' : ['random', 'cyclic']
}
},
'dec_tree' : {
'model' : DecisionTreeRegressor(),
'params' : {
'criterion': ['friedman_mse', 'squared_error', 'poisson', 'absolute_error'],
'splitter': ['best', 'random'],
}
}
}
scores = []
cv = ShuffleSplit(n_splits = 5, test_size = 0.2, random_state = 10)
for algo_name, config in algos.items():
gs = GridSearchCV(config['model'], config['params'], cv = cv, return_train_score = False)
gs.fit(x,y);
scores.append({
'model' : algo_name,
'best_score' : gs.best_score_,
'best_params' : gs.best_params_
})
return pd.DataFrame(scores, columns = ['model', 'best_score', 'best_params'])
find_best_model(x,y)
def predict_price_func(location, sqft, bath, bhk):
loc_index = np.where(x.columns == location)[0][0]
xdash = np.zeros(len(x.columns))
xdash[0] = sqft
xdash[1] = bath
xdash[2] = bhk
if loc_index >= 0:
xdash[loc_index] = 1
return lr_clf.predict([xdash])[0]
df.head()
print(x.columns)
predict_price_func('1st Phase JP Nagar', 1200, 2, 2)
predict_price_func('Indira Nagar', 1200, 3, 3)
predict_price_func('Indira Nagar', 1200, 1, 3)
predict_price_func('Indira Nagar', 1200, 3, 4)
!pip install gradio
import gradio as gr
from gradio.components import Textbox, Number
interface = gr.Interface(
fn=predict_price_func,
inputs=[
gr.inputs.Textbox(), # For location (text)
gr.inputs.Number(), # For area (numeric)
gr.inputs.Number(), # For bedrooms (numeric)
gr.inputs.Number() # For bathrooms (numeric)
],
outputs="text",
theme="huggingface"
)
interface.launch()