Spaces:
Build error
Build error
| import gradio as gr | |
| import tensorflow as tf | |
| import cv2 | |
| import numpy as np | |
| def classify_image(image): | |
| # Read and resize the image | |
| image = cv2.resize(image, (100, 100)) | |
| # Normalize the image | |
| image = image / 255.0 | |
| # Expand dimensions to match the input shape of the model | |
| image = np.expand_dims(image, axis=0) | |
| # Perform prediction using the trained model | |
| prediction = model.predict(image) | |
| # Get the predicted label | |
| label = classes[np.argmax(prediction[0])] | |
| return label | |
| # Load the pre-trained model | |
| model = tf.keras.models.load_model('./my_model.h5') | |
| # Define the class labels | |
| classes = { | |
| 0: 'Bacterial_spot', | |
| 1: 'Early_blight', | |
| 2: 'Late_blight', | |
| 3: 'Leaf_Mold', | |
| 4: 'Septoria_leaf_spot', | |
| 5: 'Spider_mites', | |
| 6: 'Target_Spot', | |
| 7: 'Tomato_Yellow_Leaf_Curl_Virus', | |
| 8: 'Tomato_mosaic_virus', | |
| 9: 'healthy' | |
| } | |
| # Define the input and output interfaces for Gradio v3.x | |
| input_interface = gr.Image() # Removed 'shape' argument | |
| output_interface = gr.Textbox() | |
| # Create the Gradio interface | |
| gr.Interface(fn=classify_image, inputs=input_interface, outputs=output_interface).launch() | |