hpratapsingh's picture
Update app.py
4a3863e verified
raw
history blame
4.42 kB
import streamlit as st
import pickle
import docx
import PyPDF2
import re
from PIL import Image
# Load pre-trained model and TF-IDF vectorizer
svc_model = pickle.load(open('clf.pkl', 'rb')) # Update with your model path
tfidf = pickle.load(open('tfidf.pkl', 'rb')) # Update with your vectorizer path
le = pickle.load(open('encoder.pkl', 'rb')) # Update with your encoder path
# Function to clean resume text
def cleanResume(txt):
cleanText = re.sub('http\S+\s', ' ', txt)
cleanText = re.sub('RT|cc', ' ', cleanText)
cleanText = re.sub('#\S+\s', ' ', cleanText)
cleanText = re.sub('@\S+', ' ', cleanText)
cleanText = re.sub('[%s]' % re.escape("""!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"""), ' ', cleanText)
cleanText = re.sub(r'[^\x00-\x7f]', ' ', cleanText)
cleanText = re.sub('\s+', ' ', cleanText)
return cleanText
# Function to extract text from PDF
def extract_text_from_pdf(file):
pdf_reader = PyPDF2.PdfReader(file)
text = ''
for page in pdf_reader.pages:
text += page.extract_text()
return text
# Function to extract text from DOCX
def extract_text_from_docx(file):
doc = docx.Document(file)
text = ''
for paragraph in doc.paragraphs:
text += paragraph.text + '\n'
return text
# Function to extract text from TXT
def extract_text_from_txt(file):
try:
text = file.read().decode('utf-8')
except UnicodeDecodeError:
text = file.read().decode('latin-1')
return text
# Function to handle file upload and extraction
def handle_file_upload(uploaded_file):
file_extension = uploaded_file.name.split('.')[-1].lower()
if file_extension == 'pdf':
text = extract_text_from_pdf(uploaded_file)
elif file_extension == 'docx':
text = extract_text_from_docx(uploaded_file)
elif file_extension == 'txt':
text = extract_text_from_txt(uploaded_file)
else:
raise ValueError("Unsupported file type. Please upload a PDF, DOCX, or TXT file.")
return text
# Function to predict the category of a resume
def pred(input_resume):
cleaned_text = cleanResume(input_resume)
vectorized_text = tfidf.transform([cleaned_text])
vectorized_text = vectorized_text.toarray()
predicted_category = svc_model.predict(vectorized_text)
predicted_category_name = le.inverse_transform(predicted_category)
return predicted_category_name[0]
def main():
st.set_page_config(page_title="Resume Classifier", page_icon="πŸ“„", layout="wide")
# Sidebar design
# st.sidebar.image("sidebar_logo.png", use_column_width=True) # Add your sidebar logo
st.sidebar.title("Navigation")
st.sidebar.write("πŸ‘‹ Welcome to the Resume Classifier!")
st.sidebar.info("Use this tool to predict the category of resumes.")
st.sidebar.markdown("---")
st.sidebar.header("Instructions")
st.sidebar.write("1. Upload a resume file (PDF, DOCX, or TXT).")
st.sidebar.write("2. View the extracted resume text.")
st.sidebar.write("3. Get the predicted job category.")
# Main page
st.title("πŸ“„ Resume Classifier")
st.markdown("Upload your resume and get an AI-powered prediction of the job category.")
# File upload
uploaded_file = st.file_uploader("Upload a Resume", type=["pdf", "docx", "txt"])
if uploaded_file is not None:
try:
resume_text = handle_file_upload(uploaded_file)
st.success("Successfully extracted the text from the uploaded resume.")
# Display extracted text
with st.expander("View Extracted Text"):
st.text_area("Extracted Resume Text", resume_text, height=300)
# Display prediction
st.subheader("Predicted Category")
category = pred(resume_text)
st.write(f"The predicted category is: **{category}**")
except Exception as e:
st.error(f"Error: {str(e)}")
# Footer with copyright and developer credits
st.markdown("---")
col1, col2 = st.columns([1, 3])
with col2:
st.markdown(
"""
<p style='text-align: center;'>
&copy; 2025 Resume Classifier. All rights reserved.<br>
Developed with ❀️ by <a href="https://github.com/" target="_blank">Aashish</a>.
</p>
""",
unsafe_allow_html=True
)
if __name__ == "__main__":
main()