Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,22 +3,41 @@ import torch
|
|
3 |
from diffusers import AutoPipelineForImage2Image
|
4 |
from diffusers.utils import make_image_grid, load_image
|
5 |
|
6 |
-
gr.load("models/NSTiwari/SDXL_LoRA_model").launch()
|
7 |
|
8 |
pipeline = AutoPipelineForImage2Image.from_pretrained(
|
9 |
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
|
10 |
)
|
11 |
-
pipeline.load_lora_weights('
|
12 |
_ = pipeline.to("cuda")
|
13 |
|
14 |
pipeline.enable_model_cpu_offload()
|
15 |
|
16 |
url = "https://img.onmanorama.com/content/dam/mm/en/lifestyle/decor/images/2020/12/1/25-lakh-living-hall.jpg.transform/576x300/image.jpg"
|
17 |
-
init_image = load_image(url)
|
18 |
-
image = init_image.resize((1024, 576))
|
19 |
|
20 |
prompt = "A cozy Indian living room glows with morning sunshine on Republic Day, its walls decked in saffron, white, and green tapestries and art, while colorful cushions and festive garlands add a vibrant, celebratory air."
|
21 |
|
22 |
# pass prompt and image to pipeline
|
23 |
image_out = pipeline(prompt, image=image, strength=0.5).images[0]
|
24 |
-
make_image_grid([image, image_out], rows=1, cols=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from diffusers import AutoPipelineForImage2Image
|
4 |
from diffusers.utils import make_image_grid, load_image
|
5 |
|
6 |
+
# gr.load("models/NSTiwari/SDXL_LoRA_model").launch()
|
7 |
|
8 |
pipeline = AutoPipelineForImage2Image.from_pretrained(
|
9 |
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
|
10 |
)
|
11 |
+
pipeline.load_lora_weights('pytorch_lora_weights_00.safetensors')
|
12 |
_ = pipeline.to("cuda")
|
13 |
|
14 |
pipeline.enable_model_cpu_offload()
|
15 |
|
16 |
url = "https://img.onmanorama.com/content/dam/mm/en/lifestyle/decor/images/2020/12/1/25-lakh-living-hall.jpg.transform/576x300/image.jpg"
|
17 |
+
# init_image = load_image(url)
|
18 |
+
# image = init_image.resize((1024, 576))
|
19 |
|
20 |
prompt = "A cozy Indian living room glows with morning sunshine on Republic Day, its walls decked in saffron, white, and green tapestries and art, while colorful cushions and festive garlands add a vibrant, celebratory air."
|
21 |
|
22 |
# pass prompt and image to pipeline
|
23 |
image_out = pipeline(prompt, image=image, strength=0.5).images[0]
|
24 |
+
# make_image_grid([image, image_out], rows=1, cols=2)
|
25 |
+
|
26 |
+
|
27 |
+
# Define the image generation function
|
28 |
+
def generate_image(prompt, image_url):
|
29 |
+
init_image = load_image(image_url)
|
30 |
+
image = init_image.resize((1024, 576))
|
31 |
+
image_out = pipeline(prompt, image=image, strength=0.5).images[0]
|
32 |
+
return image_out
|
33 |
+
|
34 |
+
|
35 |
+
# Set up Gradio interface
|
36 |
+
iface = gr.Interface(
|
37 |
+
fn=generate_image,
|
38 |
+
inputs=[gr.Textbox(label="Prompt"), gr.Textbox(label="Image URL")],
|
39 |
+
outputs="image"
|
40 |
+
)
|
41 |
+
|
42 |
+
# Launch the Gradio app
|
43 |
+
iface.launch()
|