Spaces:
Sleeping
Sleeping
AamirAli123
commited on
Commit
•
0d7efba
1
Parent(s):
1f7e67b
Upload 2 files
Browse files- app.py +245 -0
- requirements.txt +15 -0
app.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
from langchain_community.document_loaders import PyPDFLoader
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain_community.vectorstores import Chroma
|
7 |
+
from langchain.chains import ConversationalRetrievalChain
|
8 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
9 |
+
from langchain_community.llms import HuggingFacePipeline
|
10 |
+
from langchain.chains import ConversationChain
|
11 |
+
from langchain.memory import ConversationBufferMemory
|
12 |
+
from langchain.llms import HuggingFaceHub
|
13 |
+
from pathlib import Path
|
14 |
+
import chromadb
|
15 |
+
load_dotenv()
|
16 |
+
huggingfacehub_api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
17 |
+
|
18 |
+
# default_persist_directory = './chroma_HF/'
|
19 |
+
list_llm = ["mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", \
|
20 |
+
"google/gemma-7b-it","google/gemma-2b-it", \
|
21 |
+
"HuggingFaceH4/zephyr-7b-beta", \
|
22 |
+
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", "tiiuae/falcon-7b-instruct", \
|
23 |
+
"google/flan-t5-xxl"
|
24 |
+
]
|
25 |
+
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
26 |
+
|
27 |
+
# Load PDF document and create doc splits
|
28 |
+
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
29 |
+
# Processing for one document only
|
30 |
+
loaders = [PyPDFLoader(x) for x in list_file_path]
|
31 |
+
pages = []
|
32 |
+
for loader in loaders:
|
33 |
+
pages.extend(loader.load())
|
34 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
35 |
+
chunk_size = chunk_size,
|
36 |
+
chunk_overlap = chunk_overlap)
|
37 |
+
doc_splits = text_splitter.split_documents(pages)
|
38 |
+
return doc_splits
|
39 |
+
|
40 |
+
def load_doc_for_openai(list_file_path):
|
41 |
+
# Processing for one document only
|
42 |
+
loaders = [PyPDFLoader(x) for x in list_file_path]
|
43 |
+
pages = []
|
44 |
+
for loader in loaders:
|
45 |
+
pages.extend(loader.load())
|
46 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
47 |
+
chunk_size = 600,
|
48 |
+
chunk_overlap = 40)
|
49 |
+
doc_splits = text_splitter.split_documents(pages)
|
50 |
+
return doc_splits
|
51 |
+
|
52 |
+
# Create vector database
|
53 |
+
def create_db(splits, collection_name):
|
54 |
+
embedding = HuggingFaceEmbeddings()
|
55 |
+
new_client = chromadb.EphemeralClient()
|
56 |
+
vectordb = Chroma.from_documents(
|
57 |
+
documents = splits,
|
58 |
+
embedding = embedding,
|
59 |
+
client = new_client,
|
60 |
+
collection_name = collection_name,
|
61 |
+
# persist_directory=default_persist_directory
|
62 |
+
)
|
63 |
+
return vectordb
|
64 |
+
|
65 |
+
|
66 |
+
# Load vector database
|
67 |
+
def load_db():
|
68 |
+
embedding = HuggingFaceEmbeddings()
|
69 |
+
vectordb = Chroma( embedding_function = embedding)
|
70 |
+
return vectordb
|
71 |
+
|
72 |
+
|
73 |
+
# Initialize langchain LLM chain
|
74 |
+
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
75 |
+
progress(0.1, desc="Initializing HF tokenizer...")
|
76 |
+
# HuggingFaceHub uses HF inference endpoints
|
77 |
+
progress(0.5, desc="Initializing HF Hub...")
|
78 |
+
# Use of trust_remote_code as model_kwargs
|
79 |
+
# Warning: langchain issue
|
80 |
+
# URL: https://github.com/langchain-ai/langchain/issues/6080
|
81 |
+
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
|
82 |
+
llm = HuggingFaceHub(
|
83 |
+
repo_id=llm_model,
|
84 |
+
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
|
85 |
+
)
|
86 |
+
elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
|
87 |
+
llm = HuggingFaceHub(
|
88 |
+
repo_id=llm_model,
|
89 |
+
model_kwargs={"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
|
90 |
+
)
|
91 |
+
else:
|
92 |
+
llm = HuggingFaceHub(
|
93 |
+
repo_id=llm_model,
|
94 |
+
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
|
95 |
+
)
|
96 |
+
|
97 |
+
progress(0.75, desc="Defining buffer memory...")
|
98 |
+
memory = ConversationBufferMemory(
|
99 |
+
memory_key="chat_history",
|
100 |
+
output_key='answer',
|
101 |
+
return_messages=True
|
102 |
+
)
|
103 |
+
progress(0.8, desc="Defining retrieval chain...")
|
104 |
+
retriever = vector_db.as_retriever()
|
105 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
106 |
+
llm,
|
107 |
+
retriever = retriever,
|
108 |
+
chain_type = "stuff",
|
109 |
+
memory = memory,
|
110 |
+
# combine_docs_chain_kwargs={"prompt": your_prompt})
|
111 |
+
return_source_documents=True,
|
112 |
+
#return_generated_question=False,
|
113 |
+
verbose = False,
|
114 |
+
)
|
115 |
+
progress(0.9, desc="Done!")
|
116 |
+
return qa_chain
|
117 |
+
|
118 |
+
|
119 |
+
# Initialize database
|
120 |
+
def initialize_database(list_file_obj, chunk_size, chunk_overlap, vector_db, progress = gr.Progress()):
|
121 |
+
# Create list of documents (when valid)
|
122 |
+
list_file_path = [x.name for x in list_file_obj if x is not None]
|
123 |
+
# Create collection_name for vector database
|
124 |
+
progress(0.1, desc="Creating collection name...")
|
125 |
+
collection_name = Path(list_file_path[0]).stem
|
126 |
+
# Fix potential issues from naming convention
|
127 |
+
## Remove space
|
128 |
+
collection_name = collection_name.replace(" ","-")
|
129 |
+
## Limit lenght to 50 characters
|
130 |
+
collection_name = collection_name[:50]
|
131 |
+
## Enforce start and end as alphanumeric character
|
132 |
+
if not collection_name[0].isalnum():
|
133 |
+
collection_name[0] = 'A'
|
134 |
+
if not collection_name[-1].isalnum():
|
135 |
+
collection_name[-1] = 'Z'
|
136 |
+
# print('list_file_path: ', list_file_path)
|
137 |
+
print('Collection name: ', collection_name)
|
138 |
+
progress(0.25, desc="Loading document...")
|
139 |
+
# Load document and create splits
|
140 |
+
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
141 |
+
# Create or load vector database
|
142 |
+
progress(0.7, desc="Generating vector database...")
|
143 |
+
# global vector_db
|
144 |
+
vector_db = create_db(doc_splits, collection_name)
|
145 |
+
return vector_db, collection_name, "Complete!"
|
146 |
+
|
147 |
+
|
148 |
+
def re_initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db):
|
149 |
+
llm_name = list_llm[llm_option]
|
150 |
+
print("llm_name: ",llm_name)
|
151 |
+
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db)
|
152 |
+
return qa_chain
|
153 |
+
|
154 |
+
|
155 |
+
def format_chat_history(message, chat_history):
|
156 |
+
formatted_chat_history = []
|
157 |
+
for user_message, bot_message in chat_history:
|
158 |
+
formatted_chat_history.append(f"User: {user_message}")
|
159 |
+
formatted_chat_history.append(f"Assistant: {bot_message}")
|
160 |
+
return formatted_chat_history
|
161 |
+
|
162 |
+
|
163 |
+
def conversation(qa_chain, message, history, llm_option):
|
164 |
+
formatted_chat_history = format_chat_history(message, history)
|
165 |
+
# Generate response using QA chain
|
166 |
+
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
167 |
+
response_answer = response["answer"]
|
168 |
+
if response_answer.find("Helpful Answer:") != -1:
|
169 |
+
response_answer = response_answer.split("Helpful Answer:")[-1]
|
170 |
+
new_history = history + [(message, response_answer)]
|
171 |
+
return qa_chain, gr.update(value = ""), new_history
|
172 |
+
|
173 |
+
|
174 |
+
def upload_file(file_obj):
|
175 |
+
list_file_path = []
|
176 |
+
for idx, file in enumerate(file_obj):
|
177 |
+
file_path = file_obj.name
|
178 |
+
list_file_path.append(file_path)
|
179 |
+
# print(file_path)
|
180 |
+
return list_file_path
|
181 |
+
|
182 |
+
|
183 |
+
def demo():
|
184 |
+
with gr.Blocks(theme = "base") as demo:
|
185 |
+
vector_db = gr.State()
|
186 |
+
qa_chain = gr.State()
|
187 |
+
collection_name = gr.State()
|
188 |
+
gr.Markdown(
|
189 |
+
'''
|
190 |
+
<div style="text-align:center;">
|
191 |
+
<span style="font-size:3em; font-weight:bold;">PDF Document Chatbot</span>
|
192 |
+
</div>
|
193 |
+
''')
|
194 |
+
with gr.Row():
|
195 |
+
with gr.Row():
|
196 |
+
with gr.Column():
|
197 |
+
document = gr.Files(file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
|
198 |
+
with gr.Row():
|
199 |
+
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database", visible = False)
|
200 |
+
with gr.Accordion("Advanced options - Document text splitter", open=False, visible = False):
|
201 |
+
with gr.Row():
|
202 |
+
slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True, visible = False)
|
203 |
+
with gr.Row():
|
204 |
+
slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True, visible = False)
|
205 |
+
llm_btn = gr.Radio(list_llm_simple, label = "LLM models", type = "index", info = "Choose your LLM model")
|
206 |
+
db_progress = gr.Textbox(label="Vector database initialization", value="None")
|
207 |
+
with gr.Row():
|
208 |
+
submit_file = gr.Button("Submit File")
|
209 |
+
with gr.Row():
|
210 |
+
with gr.Column():
|
211 |
+
chatbot = gr.Chatbot()
|
212 |
+
msg = gr.Textbox(placeholder = "Type Your Message")
|
213 |
+
with gr.Accordion("Advanced options - LLM model", open = False):
|
214 |
+
with gr.Row():
|
215 |
+
slider_temperature = gr.Slider(minimum = 0.0, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
|
216 |
+
with gr.Row():
|
217 |
+
slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
|
218 |
+
with gr.Row():
|
219 |
+
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
|
220 |
+
with gr.Row():
|
221 |
+
submit_btn = gr.Button("Submit")
|
222 |
+
# clear_btn = gr.ClearButton([msg2, chatbot])
|
223 |
+
# Preprocessing events
|
224 |
+
#upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
|
225 |
+
submit_file.click(initialize_database, \
|
226 |
+
inputs=[document, slider_chunk_size, slider_chunk_overlap, vector_db], \
|
227 |
+
outputs = [vector_db, collection_name, db_progress])
|
228 |
+
llm_btn.change(
|
229 |
+
re_initialize_LLM, \
|
230 |
+
inputs = [llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
|
231 |
+
outputs = [qa_chain]
|
232 |
+
)
|
233 |
+
msg.submit(conversation, \
|
234 |
+
inputs=[qa_chain, msg, chatbot, llm_btn], \
|
235 |
+
outputs=[qa_chain, msg, chatbot], \
|
236 |
+
queue=False)
|
237 |
+
submit_btn.click(conversation, \
|
238 |
+
inputs=[qa_chain, msg, chatbot, llm_btn], \
|
239 |
+
outputs=[qa_chain, msg, chatbot], \
|
240 |
+
queue=False)
|
241 |
+
demo.queue().launch(share = True, debug = True)
|
242 |
+
|
243 |
+
|
244 |
+
if __name__ == "__main__":
|
245 |
+
demo()
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
sentence-transformers
|
4 |
+
langchain
|
5 |
+
tqdm
|
6 |
+
accelerate
|
7 |
+
pypdf
|
8 |
+
chromadb
|
9 |
+
langchain-community
|
10 |
+
weasyprint
|
11 |
+
openai
|
12 |
+
tiktoken
|
13 |
+
pypdf
|
14 |
+
pdf2image
|
15 |
+
gradio
|