AXL14 commited on
Commit
9730a4e
·
1 Parent(s): 80635d8

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -0
app.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ import random
4
+ import numpy as np
5
+ from transformers import MaskFormerFeatureExtractor, MaskFormerForInstanceSegmentation
6
+
7
+ device = torch.device("cpu")
8
+ model = MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-tiny-ade").to(device)
9
+ model.eval()
10
+ preprocessor = MaskFormerFeatureExtractor.from_pretrained("facebook/maskformer-swin-tiny-ade")
11
+
12
+ def visualize_instance_seg_mask(mask):
13
+ image = np.zeros((mask.shape[0], mask.shape[1], 3))
14
+ labels = np.unique(mask)
15
+ label2color = {label: (random.randint(0, 1), random.randint(0, 255), random.randint(0, 255)) for label in labels}
16
+ for i in range(image.shape[0]):
17
+ for j in range(image.shape[1]):
18
+ image[i, j, :] = label2color[mask[i, j]]
19
+ image = image / 255
20
+ return image
21
+
22
+ def query_image(img):
23
+ target_size = (img.shape[0], img.shape[1])
24
+ inputs = preprocessor(images=img, return_tensors="pt")
25
+ with torch.no_grad():
26
+ outputs = model(**inputs)
27
+ outputs.class_queries_logits = outputs.class_queries_logits.cpu()
28
+ outputs.masks_queries_logits = outputs.masks_queries_logits.cpu()
29
+ results = preprocessor.post_process_segmentation(outputs=outputs, target_size=target_size)[0].cpu().detach()
30
+ results = torch.argmax(results, dim=0).numpy()
31
+ results = visualize_instance_seg_mask(results)
32
+ return results
33
+
34
+ demo = gr.Interface(
35
+ query_image,
36
+ inputs=[gr.Image()],
37
+ outputs="image",
38
+ title="Image Segmentation Demo",
39
+ description = "Please upload an image to see segmentation capabilities of this model",
40
+ examples=[["dog.jpg"]]
41
+ )
42
+
43
+ demo.launch()