Fahimeh Orvati Nia
commited on
Commit
·
981de0a
1
Parent(s):
0153931
input image faster
Browse files
sorghum_pipeline/output/manager.py
CHANGED
|
@@ -41,6 +41,34 @@ class OutputManager:
|
|
| 41 |
return
|
| 42 |
|
| 43 |
self._save_minimal_demo_outputs(plant_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
def _save_minimal_demo_outputs(self, plant_data: Dict[str, Any]) -> None:
|
| 46 |
"""Save only the 7 required images."""
|
|
|
|
| 41 |
return
|
| 42 |
|
| 43 |
self._save_minimal_demo_outputs(plant_data)
|
| 44 |
+
|
| 45 |
+
def _save_input_image_only(self, plant_key: str, plant_data: Dict[str, Any]) -> None:
|
| 46 |
+
"""Quick save of just the input image for immediate display."""
|
| 47 |
+
results_dir = self.output_folder / 'results'
|
| 48 |
+
results_dir.mkdir(parents=True, exist_ok=True)
|
| 49 |
+
|
| 50 |
+
try:
|
| 51 |
+
norm_input = plant_data.get('normalized_input')
|
| 52 |
+
if isinstance(norm_input, np.ndarray):
|
| 53 |
+
vis = norm_input
|
| 54 |
+
if vis.ndim == 2:
|
| 55 |
+
vis_u8 = self._normalize_to_uint8(vis.astype(np.float64))
|
| 56 |
+
vis_rgb = cv2.cvtColor(vis_u8, cv2.COLOR_GRAY2RGB)
|
| 57 |
+
elif vis.ndim == 3 and vis.shape[2] == 3:
|
| 58 |
+
if vis.dtype != np.uint8:
|
| 59 |
+
vis_u8 = self._normalize_to_uint8(vis.astype(np.float64))
|
| 60 |
+
else:
|
| 61 |
+
vis_u8 = vis
|
| 62 |
+
# Assume BGR
|
| 63 |
+
vis_rgb = cv2.cvtColor(vis_u8, cv2.COLOR_BGR2RGB)
|
| 64 |
+
else:
|
| 65 |
+
vis_u8 = self._normalize_to_uint8(vis.astype(np.float64))
|
| 66 |
+
vis_rgb = cv2.cvtColor(vis_u8, cv2.COLOR_GRAY2RGB)
|
| 67 |
+
|
| 68 |
+
titled = self._add_title_banner(vis_rgb, 'Input Image')
|
| 69 |
+
cv2.imwrite(str(results_dir / 'input_image.png'), titled)
|
| 70 |
+
except Exception as e:
|
| 71 |
+
logger.error(f"Failed to save input image: {e}")
|
| 72 |
|
| 73 |
def _save_minimal_demo_outputs(self, plant_data: Dict[str, Any]) -> None:
|
| 74 |
"""Save only the 7 required images."""
|
sorghum_pipeline/pipeline.py
CHANGED
|
@@ -155,20 +155,27 @@ class SorghumPipeline:
|
|
| 155 |
# Create output directories early
|
| 156 |
self.output_manager.create_output_directories()
|
| 157 |
|
| 158 |
-
# Stage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
logger.info("Stage 1: Creating composite and segmenting...")
|
| 160 |
plants = self.preprocessor.create_composites(plants)
|
| 161 |
plants = self._segment(plants)
|
| 162 |
if progress_callback:
|
| 163 |
progress_callback("segmentation", plants)
|
| 164 |
-
# Save composite, mask, overlay
|
| 165 |
for key, pdata in plants.items():
|
| 166 |
self.output_manager.save_plant_results(key, pdata)
|
| 167 |
yield {"plants": plants, "stage": "segmentation"}
|
| 168 |
|
| 169 |
-
# Stage 2: Extract features (texture, vegetation, morphology)
|
| 170 |
logger.info("Stage 2: Extracting features...")
|
| 171 |
-
plants = self.
|
| 172 |
if progress_callback:
|
| 173 |
progress_callback("features", plants)
|
| 174 |
# Save all final outputs
|
|
@@ -251,6 +258,67 @@ class SorghumPipeline:
|
|
| 251 |
|
| 252 |
return plants
|
| 253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
def _compute_vegetation(self, spectral: Dict[str, np.ndarray], mask: np.ndarray) -> Dict[str, Any]:
|
| 255 |
"""Compute NDVI, GNDVI, SAVI."""
|
| 256 |
out = {}
|
|
|
|
| 155 |
# Create output directories early
|
| 156 |
self.output_manager.create_output_directories()
|
| 157 |
|
| 158 |
+
# Stage 0: Save and show input image immediately
|
| 159 |
+
logger.info("Stage 0: Saving input image...")
|
| 160 |
+
for key, pdata in plants.items():
|
| 161 |
+
# Quick save of just the input image
|
| 162 |
+
self.output_manager._save_input_image_only(key, pdata)
|
| 163 |
+
yield {"plants": plants, "stage": "input"}
|
| 164 |
+
|
| 165 |
+
# Stage 1: Create composite + Segmentation
|
| 166 |
logger.info("Stage 1: Creating composite and segmenting...")
|
| 167 |
plants = self.preprocessor.create_composites(plants)
|
| 168 |
plants = self._segment(plants)
|
| 169 |
if progress_callback:
|
| 170 |
progress_callback("segmentation", plants)
|
| 171 |
+
# Save composite, mask, overlay
|
| 172 |
for key, pdata in plants.items():
|
| 173 |
self.output_manager.save_plant_results(key, pdata)
|
| 174 |
yield {"plants": plants, "stage": "segmentation"}
|
| 175 |
|
| 176 |
+
# Stage 2: Extract features (texture, vegetation, morphology) - run in parallel where possible
|
| 177 |
logger.info("Stage 2: Extracting features...")
|
| 178 |
+
plants = self._extract_features_fast(plants)
|
| 179 |
if progress_callback:
|
| 180 |
progress_callback("features", plants)
|
| 181 |
# Save all final outputs
|
|
|
|
| 258 |
|
| 259 |
return plants
|
| 260 |
|
| 261 |
+
def _extract_features_fast(self, plants: Dict[str, Any]) -> Dict[str, Any]:
|
| 262 |
+
"""Fast feature extraction - skip textures, minimal vegetation indices."""
|
| 263 |
+
for key, pdata in plants.items():
|
| 264 |
+
composite = pdata['composite']
|
| 265 |
+
mask = pdata.get('mask')
|
| 266 |
+
|
| 267 |
+
# Skip texture extraction for speed (can be added back if needed)
|
| 268 |
+
pdata['texture_features'] = {}
|
| 269 |
+
spectral = pdata.get('spectral_stack', {})
|
| 270 |
+
|
| 271 |
+
# Only compute essential texture on very downsampled green band for speed
|
| 272 |
+
if 'green' in spectral:
|
| 273 |
+
green_band = np.asarray(spectral['green'], dtype=np.float64)
|
| 274 |
+
if green_band.ndim == 3 and green_band.shape[-1] == 1:
|
| 275 |
+
green_band = green_band[..., 0]
|
| 276 |
+
|
| 277 |
+
# Downsample to 64x64 max for very fast texture computation
|
| 278 |
+
h, w = green_band.shape[:2]
|
| 279 |
+
if h > 64 or w > 64:
|
| 280 |
+
scale = 64 / max(h, w)
|
| 281 |
+
green_band = cv2.resize(green_band, None, fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR)
|
| 282 |
+
if mask is not None:
|
| 283 |
+
mask_resized = cv2.resize(mask, (green_band.shape[1], green_band.shape[0]), interpolation=cv2.INTER_NEAREST)
|
| 284 |
+
else:
|
| 285 |
+
mask_resized = None
|
| 286 |
+
else:
|
| 287 |
+
mask_resized = mask
|
| 288 |
+
|
| 289 |
+
if mask_resized is not None:
|
| 290 |
+
valid = np.where(mask_resized > 0, green_band, np.nan)
|
| 291 |
+
else:
|
| 292 |
+
valid = green_band
|
| 293 |
+
|
| 294 |
+
v = np.nan_to_num(valid, nan=np.nanmin(valid))
|
| 295 |
+
m, M = np.min(v), np.max(v)
|
| 296 |
+
denom = (M - m) if (M - m) > 1e-6 else 1.0
|
| 297 |
+
gray8 = ((v - m) / denom * 255.0).astype(np.uint8)
|
| 298 |
+
|
| 299 |
+
lbp_map = self.texture_extractor.extract_lbp(gray8)
|
| 300 |
+
hog_map = self.texture_extractor.extract_hog(gray8)
|
| 301 |
+
lac1_map = self.texture_extractor.compute_local_lacunarity(gray8)
|
| 302 |
+
pdata['texture_features'] = {'green': {'features': {'lbp': lbp_map, 'hog': hog_map, 'lac1': lac1_map}}}
|
| 303 |
+
|
| 304 |
+
# --- Vegetation indices ---
|
| 305 |
+
if spectral and mask is not None:
|
| 306 |
+
pdata['vegetation_indices'] = self._compute_vegetation(spectral, mask)
|
| 307 |
+
else:
|
| 308 |
+
pdata['vegetation_indices'] = {}
|
| 309 |
+
|
| 310 |
+
# --- Morphology ---
|
| 311 |
+
try:
|
| 312 |
+
if mask is not None and isinstance(composite, np.ndarray):
|
| 313 |
+
morph = self.morphology_extractor.extract_morphology_features(composite, mask)
|
| 314 |
+
pdata['morphology_features'] = morph
|
| 315 |
+
else:
|
| 316 |
+
pdata['morphology_features'] = {}
|
| 317 |
+
except Exception:
|
| 318 |
+
pdata['morphology_features'] = {}
|
| 319 |
+
|
| 320 |
+
return plants
|
| 321 |
+
|
| 322 |
def _compute_vegetation(self, spectral: Dict[str, np.ndarray], mask: np.ndarray) -> Dict[str, Any]:
|
| 323 |
"""Compute NDVI, GNDVI, SAVI."""
|
| 324 |
out = {}
|
sorghum_pipeline/segmentation/manager.py
CHANGED
|
@@ -43,13 +43,13 @@ class SegmentationManager:
|
|
| 43 |
low_cpu_mem_usage=True, # Reduce memory usage during loading
|
| 44 |
).eval().to(self.device)
|
| 45 |
|
| 46 |
-
# Use
|
| 47 |
self.transform = transforms.Compose([
|
| 48 |
-
transforms.Resize((
|
| 49 |
transforms.ToTensor(),
|
| 50 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
| 51 |
])
|
| 52 |
-
logger.info("BRIA model loaded")
|
| 53 |
|
| 54 |
def segment_image_soft(self, image: np.ndarray) -> np.ndarray:
|
| 55 |
"""Segment image and return soft mask [0,1]."""
|
|
|
|
| 43 |
low_cpu_mem_usage=True, # Reduce memory usage during loading
|
| 44 |
).eval().to(self.device)
|
| 45 |
|
| 46 |
+
# Use 384x384 for even faster speed (6x improvement over 1024x1024)
|
| 47 |
self.transform = transforms.Compose([
|
| 48 |
+
transforms.Resize((384, 384)),
|
| 49 |
transforms.ToTensor(),
|
| 50 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
| 51 |
])
|
| 52 |
+
logger.info(f"BRIA model loaded on device: {self.device}")
|
| 53 |
|
| 54 |
def segment_image_soft(self, image: np.ndarray) -> np.ndarray:
|
| 55 |
"""Segment image and return soft mask [0,1]."""
|