Spaces:
Running
on
Zero
Running
on
Zero
v1.2
Browse files- app.py +25 -16
- diffrhythm/config/{diffrhythm-1b.json → config.json} +1 -1
- diffrhythm/infer/infer.py +169 -102
- diffrhythm/infer/infer_utils.py +345 -58
- diffrhythm/model/__pycache__/__init__.cpython-310.pyc +0 -0
- diffrhythm/model/__pycache__/__init__.cpython-312.pyc +0 -0
- diffrhythm/model/__pycache__/cfm.cpython-310.pyc +0 -0
- diffrhythm/model/__pycache__/cfm.cpython-312.pyc +0 -0
- diffrhythm/model/__pycache__/custom_dataset.cpython-310.pyc +0 -0
- diffrhythm/model/__pycache__/custom_dataset_lrc_emb.cpython-310.pyc +0 -0
- diffrhythm/model/__pycache__/dataset.cpython-310.pyc +0 -0
- diffrhythm/model/__pycache__/dit.cpython-310.pyc +0 -0
- diffrhythm/model/__pycache__/modules.cpython-310.pyc +0 -0
- diffrhythm/model/__pycache__/trainer.cpython-310.pyc +0 -0
- diffrhythm/model/__pycache__/utils.cpython-310.pyc +0 -0
- diffrhythm/model/cfm.py +62 -43
- diffrhythm/model/dit.py +40 -25
- diffrhythm/model/modules.py +41 -0
- diffrhythm/model/utils.py +4 -4
- pretrained/eval.py +66 -0
- pretrained/eval.safetensors +3 -0
- pretrained/eval.yaml +6 -0
app.py
CHANGED
@@ -27,22 +27,16 @@ from diffrhythm.infer.infer import inference
|
|
27 |
|
28 |
MAX_SEED = np.iinfo(np.int32).max
|
29 |
device='cuda'
|
30 |
-
cfm,
|
31 |
cfm = torch.compile(cfm)
|
32 |
-
cfm_full = torch.compile(cfm_full)
|
33 |
|
34 |
-
@spaces.GPU
|
35 |
-
def infer_music(lrc, ref_audio_path, text_prompt, current_prompt_type, seed=42, randomize_seed=False, steps=32, cfg_strength=4.0, file_type='wav', odeint_method='euler',
|
36 |
-
|
37 |
-
|
38 |
-
cfm_model = cfm
|
39 |
-
else:
|
40 |
-
max_frames = 6144
|
41 |
-
cfm_model = cfm_full
|
42 |
if randomize_seed:
|
43 |
seed = random.randint(0, MAX_SEED)
|
44 |
torch.manual_seed(seed)
|
45 |
-
sway_sampling_coef = -1 if steps < 32 else None
|
46 |
vocal_flag = False
|
47 |
try:
|
48 |
lrc_prompt, start_time = get_lrc_token(max_frames, lrc, tokenizer, device)
|
@@ -53,9 +47,16 @@ def infer_music(lrc, ref_audio_path, text_prompt, current_prompt_type, seed=42,
|
|
53 |
except Exception as e:
|
54 |
raise gr.Error(f"Error: {str(e)}")
|
55 |
negative_style_prompt = get_negative_style_prompt(device)
|
56 |
-
latent_prompt = get_reference_latent(device, max_frames)
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
58 |
vae_model=vae,
|
|
|
|
|
59 |
cond=latent_prompt,
|
60 |
text=lrc_prompt,
|
61 |
duration=max_frames,
|
@@ -68,6 +69,8 @@ def infer_music(lrc, ref_audio_path, text_prompt, current_prompt_type, seed=42,
|
|
68 |
file_type=file_type,
|
69 |
vocal_flag=vocal_flag,
|
70 |
odeint_method=odeint_method,
|
|
|
|
|
71 |
)
|
72 |
return generated_song
|
73 |
|
@@ -234,8 +237,8 @@ with gr.Blocks(css=css) as demo:
|
|
234 |
- If loading audio result is slow, you can select Output Format as mp3 in Advanced Settings.
|
235 |
|
236 |
""")
|
237 |
-
Music_Duration = gr.Radio(["95s", "285s"], label="Music Duration", value="95s")
|
238 |
-
|
239 |
lyrics_btn = gr.Button("Generate", variant="primary")
|
240 |
audio_output = gr.Audio(label="Audio Result", type="filepath", elem_id="audio_output")
|
241 |
with gr.Accordion("Advanced Settings", open=False):
|
@@ -266,6 +269,12 @@ with gr.Blocks(css=css) as demo:
|
|
266 |
interactive=True,
|
267 |
elem_id="step_slider"
|
268 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
odeint_method = gr.Radio(["euler", "midpoint", "rk4","implicit_adams"], label="ODE Solver", value="euler")
|
270 |
file_type = gr.Dropdown(["wav", "mp3", "ogg"], label="Output Format", value="wav")
|
271 |
|
@@ -409,7 +418,7 @@ with gr.Blocks(css=css) as demo:
|
|
409 |
|
410 |
lyrics_btn.click(
|
411 |
fn=infer_music,
|
412 |
-
inputs=[lrc, audio_prompt, text_prompt, current_prompt_type, seed, randomize_seed, steps, cfg_strength, file_type, odeint_method,
|
413 |
outputs=audio_output
|
414 |
)
|
415 |
|
|
|
27 |
|
28 |
MAX_SEED = np.iinfo(np.int32).max
|
29 |
device='cuda'
|
30 |
+
cfm, tokenizer, muq, vae, eval_model, eval_muq = prepare_model(device)
|
31 |
cfm = torch.compile(cfm)
|
|
|
32 |
|
33 |
+
@spaces.GPU
|
34 |
+
def infer_music(lrc, ref_audio_path, text_prompt, current_prompt_type, seed=42, randomize_seed=False, steps=32, cfg_strength=4.0, file_type='wav', odeint_method='euler', preference_infer="quality first", edit=False, edit_segments=None, device='cuda'):
|
35 |
+
max_frames = 2048
|
36 |
+
sway_sampling_coef = -1 if steps < 32 else None
|
|
|
|
|
|
|
|
|
37 |
if randomize_seed:
|
38 |
seed = random.randint(0, MAX_SEED)
|
39 |
torch.manual_seed(seed)
|
|
|
40 |
vocal_flag = False
|
41 |
try:
|
42 |
lrc_prompt, start_time = get_lrc_token(max_frames, lrc, tokenizer, device)
|
|
|
47 |
except Exception as e:
|
48 |
raise gr.Error(f"Error: {str(e)}")
|
49 |
negative_style_prompt = get_negative_style_prompt(device)
|
50 |
+
latent_prompt, pred_frames = get_reference_latent(device, max_frames, edit, edit_segments, ref_audio_path, vae)
|
51 |
+
|
52 |
+
if preference_infer == "quality first":
|
53 |
+
batch_infer_num = 5
|
54 |
+
else:
|
55 |
+
batch_infer_num = 1
|
56 |
+
generated_song = inference(cfm_model=cfm,
|
57 |
vae_model=vae,
|
58 |
+
eval_model=eval_model,
|
59 |
+
eval_muq=eval_muq,
|
60 |
cond=latent_prompt,
|
61 |
text=lrc_prompt,
|
62 |
duration=max_frames,
|
|
|
69 |
file_type=file_type,
|
70 |
vocal_flag=vocal_flag,
|
71 |
odeint_method=odeint_method,
|
72 |
+
pred_frames=pred_frames,
|
73 |
+
batch_infer_num=batch_infer_num,
|
74 |
)
|
75 |
return generated_song
|
76 |
|
|
|
237 |
- If loading audio result is slow, you can select Output Format as mp3 in Advanced Settings.
|
238 |
|
239 |
""")
|
240 |
+
# Music_Duration = gr.Radio(["95s", "285s"], label="Music Duration", value="95s")
|
241 |
+
preference_infer = gr.Radio(["quality first", "speed first"], label="Preference", value="quality first")
|
242 |
lyrics_btn = gr.Button("Generate", variant="primary")
|
243 |
audio_output = gr.Audio(label="Audio Result", type="filepath", elem_id="audio_output")
|
244 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
269 |
interactive=True,
|
270 |
elem_id="step_slider"
|
271 |
)
|
272 |
+
edit = gr.Checkbox(label="edit", value=False)
|
273 |
+
edit_segeditments = gr.Textbox(
|
274 |
+
label="Edit Segments",
|
275 |
+
placeholder="Time segments to edit (in seconds). Format: `[[start1,end1],...]",
|
276 |
+
)
|
277 |
+
|
278 |
odeint_method = gr.Radio(["euler", "midpoint", "rk4","implicit_adams"], label="ODE Solver", value="euler")
|
279 |
file_type = gr.Dropdown(["wav", "mp3", "ogg"], label="Output Format", value="wav")
|
280 |
|
|
|
418 |
|
419 |
lyrics_btn.click(
|
420 |
fn=infer_music,
|
421 |
+
inputs=[lrc, audio_prompt, text_prompt, current_prompt_type, seed, randomize_seed, steps, cfg_strength, file_type, odeint_method, preference_infer, edit, edit_segments],
|
422 |
outputs=audio_output
|
423 |
)
|
424 |
|
diffrhythm/config/{diffrhythm-1b.json → config.json}
RENAMED
@@ -2,7 +2,7 @@
|
|
2 |
"model_type": "diffrhythm",
|
3 |
"model": {
|
4 |
"dim": 2048,
|
5 |
-
"depth": 16,
|
6 |
"heads": 32,
|
7 |
"ff_mult": 4,
|
8 |
"text_dim": 512,
|
|
|
2 |
"model_type": "diffrhythm",
|
3 |
"model": {
|
4 |
"dim": 2048,
|
5 |
+
"depth": 16,
|
6 |
"heads": 32,
|
7 |
"ff_mult": 4,
|
8 |
"text_dim": 512,
|
diffrhythm/infer/infer.py
CHANGED
@@ -2,82 +2,51 @@ import torch
|
|
2 |
import torchaudio
|
3 |
from einops import rearrange
|
4 |
import argparse
|
5 |
-
import json
|
6 |
import os
|
7 |
-
|
8 |
import random
|
|
|
|
|
|
|
9 |
import numpy as np
|
10 |
-
import
|
11 |
import io
|
12 |
import pydub
|
13 |
|
14 |
from diffrhythm.infer.infer_utils import (
|
15 |
-
|
16 |
get_lrc_token,
|
17 |
-
|
|
|
|
|
18 |
prepare_model,
|
19 |
-
|
20 |
)
|
21 |
|
22 |
-
def decode_audio(latents, vae_model, chunked=False, overlap=32, chunk_size=128):
|
23 |
-
downsampling_ratio = 2048
|
24 |
-
io_channels = 2
|
25 |
-
if not chunked:
|
26 |
-
# default behavior. Decode the entire latent in parallel
|
27 |
-
return vae_model.decode_export(latents)
|
28 |
-
else:
|
29 |
-
# chunked decoding
|
30 |
-
hop_size = chunk_size - overlap
|
31 |
-
total_size = latents.shape[2]
|
32 |
-
batch_size = latents.shape[0]
|
33 |
-
chunks = []
|
34 |
-
i = 0
|
35 |
-
for i in range(0, total_size - chunk_size + 1, hop_size):
|
36 |
-
chunk = latents[:,:,i:i+chunk_size]
|
37 |
-
chunks.append(chunk)
|
38 |
-
if i+chunk_size != total_size:
|
39 |
-
# Final chunk
|
40 |
-
chunk = latents[:,:,-chunk_size:]
|
41 |
-
chunks.append(chunk)
|
42 |
-
chunks = torch.stack(chunks)
|
43 |
-
num_chunks = chunks.shape[0]
|
44 |
-
# samples_per_latent is just the downsampling ratio
|
45 |
-
samples_per_latent = downsampling_ratio
|
46 |
-
# Create an empty waveform, we will populate it with chunks as decode them
|
47 |
-
y_size = total_size * samples_per_latent
|
48 |
-
y_final = torch.zeros((batch_size,io_channels,y_size)).to(latents.device)
|
49 |
-
for i in range(num_chunks):
|
50 |
-
x_chunk = chunks[i,:]
|
51 |
-
# decode the chunk
|
52 |
-
y_chunk = vae_model.decode_export(x_chunk)
|
53 |
-
# figure out where to put the audio along the time domain
|
54 |
-
if i == num_chunks-1:
|
55 |
-
# final chunk always goes at the end
|
56 |
-
t_end = y_size
|
57 |
-
t_start = t_end - y_chunk.shape[2]
|
58 |
-
else:
|
59 |
-
t_start = i * hop_size * samples_per_latent
|
60 |
-
t_end = t_start + chunk_size * samples_per_latent
|
61 |
-
# remove the edges of the overlaps
|
62 |
-
ol = (overlap//2) * samples_per_latent
|
63 |
-
chunk_start = 0
|
64 |
-
chunk_end = y_chunk.shape[2]
|
65 |
-
if i > 0:
|
66 |
-
# no overlap for the start of the first chunk
|
67 |
-
t_start += ol
|
68 |
-
chunk_start += ol
|
69 |
-
if i < num_chunks-1:
|
70 |
-
# no overlap for the end of the last chunk
|
71 |
-
t_end -= ol
|
72 |
-
chunk_end -= ol
|
73 |
-
# paste the chunked audio into our y_final output audio
|
74 |
-
y_final[:,:,t_start:t_end] = y_chunk[:,:,chunk_start:chunk_end]
|
75 |
-
return y_final
|
76 |
-
|
77 |
-
def inference(cfm_model, vae_model, cond, text, duration, style_prompt, negative_style_prompt, steps, cfg_strength, sway_sampling_coef, start_time, file_type, vocal_flag, odeint_method):
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
with torch.inference_mode():
|
80 |
-
|
81 |
cond=cond,
|
82 |
text=text,
|
83 |
duration=duration,
|
@@ -89,17 +58,27 @@ def inference(cfm_model, vae_model, cond, text, duration, style_prompt, negative
|
|
89 |
start_time=start_time,
|
90 |
vocal_flag=vocal_flag,
|
91 |
odeint_method=odeint_method,
|
|
|
|
|
92 |
)
|
93 |
-
|
94 |
-
generated = generated.to(torch.float32)
|
95 |
-
latent = generated.transpose(1, 2) # [b d t]
|
96 |
-
output = decode_audio(latent, vae_model, chunked=False)
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
output_np = output_tensor.numpy().T.astype(np.float32)
|
102 |
-
|
103 |
if file_type == 'wav':
|
104 |
return (44100, output_np)
|
105 |
else:
|
@@ -111,52 +90,140 @@ def inference(cfm_model, vae_model, cond, text, duration, style_prompt, negative
|
|
111 |
else:
|
112 |
song.export(buffer, format="ogg", bitrate="320k")
|
113 |
return buffer.getvalue()
|
114 |
-
|
115 |
|
|
|
|
|
116 |
if __name__ == "__main__":
|
117 |
parser = argparse.ArgumentParser()
|
118 |
-
parser.add_argument(
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
args = parser.parse_args()
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
audio_length = args.audio_length
|
127 |
if audio_length == 95:
|
128 |
max_frames = 2048
|
129 |
elif audio_length == 285:
|
130 |
max_frames = 6144
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
-
cfm, tokenizer, muq, vae = prepare_model(device)
|
133 |
-
|
134 |
-
with open(args.lrc_path, 'r') as f:
|
135 |
-
lrc = f.read()
|
136 |
-
lrc_prompt, start_time = get_lrc_token(lrc, tokenizer, device)
|
137 |
-
|
138 |
-
style_prompt = get_audio_style_prompt(muq, args.ref_audio_path)
|
139 |
|
140 |
-
negative_style_prompt = get_negative_style_prompt(device)
|
141 |
|
142 |
-
|
143 |
|
144 |
-
|
145 |
-
generated_song =
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
)
|
154 |
e_t = time.time() - s_t
|
155 |
-
print(f"inference cost {e_t} seconds")
|
156 |
-
|
157 |
output_dir = args.output_dir
|
158 |
os.makedirs(output_dir, exist_ok=True)
|
159 |
-
|
160 |
output_path = os.path.join(output_dir, "output.wav")
|
161 |
torchaudio.save(output_path, generated_song, sample_rate=44100)
|
162 |
-
|
|
|
2 |
import torchaudio
|
3 |
from einops import rearrange
|
4 |
import argparse
|
|
|
5 |
import os
|
6 |
+
import time
|
7 |
import random
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torchaudio
|
11 |
import numpy as np
|
12 |
+
from einops import rearrange
|
13 |
import io
|
14 |
import pydub
|
15 |
|
16 |
from diffrhythm.infer.infer_utils import (
|
17 |
+
decode_audio,
|
18 |
get_lrc_token,
|
19 |
+
get_negative_style_prompt,
|
20 |
+
get_reference_latent,
|
21 |
+
get_style_prompt,
|
22 |
prepare_model,
|
23 |
+
eval_song,
|
24 |
)
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
def inference(
|
28 |
+
cfm_model,
|
29 |
+
vae_model,
|
30 |
+
eval_model,
|
31 |
+
eval_muq,
|
32 |
+
cond,
|
33 |
+
text,
|
34 |
+
duration,
|
35 |
+
style_prompt,
|
36 |
+
negative_style_prompt,
|
37 |
+
steps,
|
38 |
+
cfg_strength,
|
39 |
+
sway_sampling_coef,
|
40 |
+
start_time,
|
41 |
+
file_type,
|
42 |
+
vocal_flag,
|
43 |
+
odeint_method,
|
44 |
+
pred_frames,
|
45 |
+
batch_infer_num,
|
46 |
+
chunked=True,
|
47 |
+
):
|
48 |
with torch.inference_mode():
|
49 |
+
latents, _ = cfm_model.sample(
|
50 |
cond=cond,
|
51 |
text=text,
|
52 |
duration=duration,
|
|
|
58 |
start_time=start_time,
|
59 |
vocal_flag=vocal_flag,
|
60 |
odeint_method=odeint_method,
|
61 |
+
latent_pred_segments=pred_frames,
|
62 |
+
batch_infer_num=batch_infer_num
|
63 |
)
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
outputs = []
|
66 |
+
for latent in latents:
|
67 |
+
latent = latent.to(torch.float32)
|
68 |
+
latent = latent.transpose(1, 2) # [b d t]
|
69 |
+
|
70 |
+
output = decode_audio(latent, vae_model, chunked=chunked)
|
71 |
+
|
72 |
+
# Rearrange audio batch to a single sequence
|
73 |
+
output = rearrange(output, "b d n -> d (b n)")
|
74 |
+
|
75 |
+
outputs.append(output)
|
76 |
+
if batch_infer_num > 1:
|
77 |
+
generated_song = eval_song(eval_model, eval_muq, outputs)
|
78 |
+
else:
|
79 |
+
generated_song = outputs[0]
|
80 |
+
output_tensor = generated_song.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).cpu()
|
81 |
output_np = output_tensor.numpy().T.astype(np.float32)
|
|
|
82 |
if file_type == 'wav':
|
83 |
return (44100, output_np)
|
84 |
else:
|
|
|
90 |
else:
|
91 |
song.export(buffer, format="ogg", bitrate="320k")
|
92 |
return buffer.getvalue()
|
|
|
93 |
|
94 |
+
|
95 |
+
|
96 |
if __name__ == "__main__":
|
97 |
parser = argparse.ArgumentParser()
|
98 |
+
parser.add_argument(
|
99 |
+
"--lrc-path",
|
100 |
+
type=str,
|
101 |
+
help="lyrics of target song",
|
102 |
+
) # lyrics of target song
|
103 |
+
parser.add_argument(
|
104 |
+
"--ref-prompt",
|
105 |
+
type=str,
|
106 |
+
help="reference prompt as style prompt for target song",
|
107 |
+
required=False,
|
108 |
+
) # reference prompt as style prompt for target song
|
109 |
+
parser.add_argument(
|
110 |
+
"--ref-audio-path",
|
111 |
+
type=str,
|
112 |
+
help="reference audio as style prompt for target song",
|
113 |
+
required=False,
|
114 |
+
) # reference audio as style prompt for target song
|
115 |
+
parser.add_argument(
|
116 |
+
"--chunked",
|
117 |
+
action="store_true",
|
118 |
+
help="whether to use chunked decoding",
|
119 |
+
) # whether to use chunked decoding
|
120 |
+
parser.add_argument(
|
121 |
+
"--audio-length",
|
122 |
+
type=int,
|
123 |
+
default=95,
|
124 |
+
choices=[95, 285],
|
125 |
+
help="length of generated song",
|
126 |
+
) # length of target song
|
127 |
+
parser.add_argument(
|
128 |
+
"--repo-id", type=str, default="ASLP-lab/DiffRhythm-base", help="target model"
|
129 |
+
)
|
130 |
+
parser.add_argument(
|
131 |
+
"--output-dir",
|
132 |
+
type=str,
|
133 |
+
default="infer/example/output",
|
134 |
+
help="output directory fo generated song",
|
135 |
+
) # output directory of target song
|
136 |
+
parser.add_argument(
|
137 |
+
"--edit",
|
138 |
+
action="store_true",
|
139 |
+
help="whether to open edit mode",
|
140 |
+
) # edit flag
|
141 |
+
parser.add_argument(
|
142 |
+
"--ref-song",
|
143 |
+
type=str,
|
144 |
+
required=False,
|
145 |
+
help="reference prompt as latent prompt for editing",
|
146 |
+
) # reference prompt as latent prompt for editing
|
147 |
+
parser.add_argument(
|
148 |
+
"--edit-segments",
|
149 |
+
type=str,
|
150 |
+
required=False,
|
151 |
+
help="edit segments o target song",
|
152 |
+
) # edit segments o target song
|
153 |
args = parser.parse_args()
|
154 |
+
|
155 |
+
assert (
|
156 |
+
args.ref_prompt or args.ref_audio_path
|
157 |
+
), "either ref_prompt or ref_audio_path should be provided"
|
158 |
+
assert not (
|
159 |
+
args.ref_prompt and args.ref_audio_path
|
160 |
+
), "only one of them should be provided"
|
161 |
+
if args.edit:
|
162 |
+
assert (
|
163 |
+
args.ref_song and args.edit_segments
|
164 |
+
), "reference song and edit segments should be provided for editing"
|
165 |
+
|
166 |
+
device = "cpu"
|
167 |
+
if torch.cuda.is_available():
|
168 |
+
device = "cuda"
|
169 |
+
elif torch.mps.is_available():
|
170 |
+
device = "mps"
|
171 |
+
|
172 |
audio_length = args.audio_length
|
173 |
if audio_length == 95:
|
174 |
max_frames = 2048
|
175 |
elif audio_length == 285:
|
176 |
max_frames = 6144
|
177 |
+
|
178 |
+
cfm, tokenizer, muq, vae, eval_model, eval_muq = prepare_model(max_frames, device, repo_id=args.repo_id)
|
179 |
+
|
180 |
+
if args.lrc_path:
|
181 |
+
with open(args.lrc_path, "r", encoding='utf-8') as f:
|
182 |
+
lrc = f.read()
|
183 |
+
else:
|
184 |
+
lrc = ""
|
185 |
+
lrc_prompt, start_time = get_lrc_token(max_frames, lrc, tokenizer, device)
|
186 |
+
|
187 |
+
if args.ref_audio_path:
|
188 |
+
style_prompt = get_style_prompt(muq, args.ref_audio_path)
|
189 |
+
else:
|
190 |
+
style_prompt = get_style_prompt(muq, prompt=args.ref_prompt)
|
191 |
+
|
192 |
+
negative_style_prompt = get_negative_style_prompt(device)
|
193 |
+
|
194 |
+
latent_prompt, pred_frames = get_reference_latent(device, max_frames, args.edit, args.edit_segments, args.ref_song, vae)
|
195 |
+
|
196 |
+
s_t = time.time()
|
197 |
+
generated_songs = inference(
|
198 |
+
cfm_model=cfm,
|
199 |
+
vae_model=vae,
|
200 |
+
cond=latent_prompt,
|
201 |
+
text=lrc_prompt,
|
202 |
+
duration=max_frames,
|
203 |
+
style_prompt=style_prompt,
|
204 |
+
negative_style_prompt=negative_style_prompt,
|
205 |
+
start_time=start_time,
|
206 |
+
pred_frames=pred_frames,
|
207 |
+
chunked=args.chunked,
|
208 |
+
)
|
209 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
|
|
|
211 |
|
212 |
+
generated_song = eval_song(eval_model, eval_muq, generated_songs)
|
213 |
|
214 |
+
# Peak normalize, clip, convert to int16, and save to file
|
215 |
+
generated_song = (
|
216 |
+
generated_song.to(torch.float32)
|
217 |
+
.div(torch.max(torch.abs(generated_song)))
|
218 |
+
.clamp(-1, 1)
|
219 |
+
.mul(32767)
|
220 |
+
.to(torch.int16)
|
221 |
+
.cpu()
|
222 |
+
)
|
|
|
223 |
e_t = time.time() - s_t
|
224 |
+
print(f"inference cost {e_t:.2f} seconds")
|
|
|
225 |
output_dir = args.output_dir
|
226 |
os.makedirs(output_dir, exist_ok=True)
|
227 |
+
|
228 |
output_path = os.path.join(output_dir, "output.wav")
|
229 |
torchaudio.save(output_path, generated_song, sample_rate=44100)
|
|
diffrhythm/infer/infer_utils.py
CHANGED
@@ -1,66 +1,308 @@
|
|
1 |
import torch
|
2 |
import librosa
|
|
|
3 |
import random
|
4 |
import json
|
5 |
-
from muq import MuQMuLan
|
6 |
from mutagen.mp3 import MP3
|
7 |
import os
|
8 |
import numpy as np
|
9 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
|
|
10 |
from diffrhythm.model import DiT, CFM
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def prepare_model(device):
|
14 |
# prepare cfm model
|
15 |
-
|
16 |
-
|
17 |
-
dit_config_path = "./diffrhythm/config/
|
18 |
with open(dit_config_path) as f:
|
19 |
model_config = json.load(f)
|
20 |
dit_model_cls = DiT
|
21 |
cfm = CFM(
|
22 |
-
transformer=dit_model_cls(**model_config["model"],
|
23 |
num_channels=model_config["model"]['mel_dim'],
|
24 |
-
use_style_prompt=True
|
25 |
)
|
26 |
cfm = cfm.to(device)
|
27 |
cfm = load_checkpoint(cfm, dit_ckpt_path, device=device, use_ema=False)
|
28 |
-
|
29 |
-
cfm_full = CFM(
|
30 |
-
transformer=dit_model_cls(**model_config["model"], use_style_prompt=True, max_pos=6144),
|
31 |
-
num_channels=model_config["model"]['mel_dim'],
|
32 |
-
use_style_prompt=True
|
33 |
-
)
|
34 |
-
cfm_full = cfm_full.to(device)
|
35 |
-
cfm_full = load_checkpoint(cfm_full, dit_full_ckpt_path, device=device, use_ema=False)
|
36 |
-
|
37 |
# prepare tokenizer
|
38 |
tokenizer = CNENTokenizer()
|
39 |
-
|
40 |
# prepare muq
|
41 |
-
muq = MuQMuLan.from_pretrained("OpenMuQ/MuQ-MuLan-large")
|
42 |
muq = muq.to(device).eval()
|
43 |
-
|
44 |
# prepare vae
|
45 |
vae_ckpt_path = hf_hub_download(repo_id="ASLP-lab/DiffRhythm-vae", filename="vae_model.pt")
|
46 |
-
vae = torch.jit.load(vae_ckpt_path, map_location=
|
|
|
47 |
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
|
51 |
# for song edit, will be added in the future
|
52 |
-
def get_reference_latent(device, max_frames):
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
def get_negative_style_prompt(device):
|
56 |
file_path = "./src/negative_prompt.npy"
|
57 |
vocal_stlye = np.load(file_path)
|
58 |
-
|
59 |
-
vocal_stlye = torch.from_numpy(vocal_stlye).to(device)
|
60 |
vocal_stlye = vocal_stlye.half()
|
61 |
-
|
62 |
return vocal_stlye
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
def get_audio_style_prompt(model, wav_path):
|
65 |
vocal_flag = False
|
66 |
mulan = model
|
@@ -85,6 +327,8 @@ def get_audio_style_prompt(model, wav_path):
|
|
85 |
|
86 |
return audio_emb, vocal_flag
|
87 |
|
|
|
|
|
88 |
def get_text_style_prompt(model, text_prompt):
|
89 |
mulan = model
|
90 |
|
@@ -95,50 +339,88 @@ def get_text_style_prompt(model, text_prompt):
|
|
95 |
return text_emb
|
96 |
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
def parse_lyrics(lyrics: str):
|
100 |
lyrics_with_time = []
|
101 |
lyrics = lyrics.strip()
|
102 |
-
for line in lyrics.split(
|
103 |
try:
|
104 |
time, lyric = line[1:9], line[10:]
|
105 |
lyric = lyric.strip()
|
106 |
-
mins, secs = time.split(
|
107 |
secs = int(mins) * 60 + float(secs)
|
108 |
lyrics_with_time.append((secs, lyric))
|
109 |
except:
|
110 |
continue
|
111 |
return lyrics_with_time
|
112 |
|
113 |
-
|
|
|
114 |
def __init__(self):
|
115 |
-
with open(
|
116 |
-
self.phone2id:dict = json.load(file)[
|
117 |
-
self.id2phone = {v:k for (k, v) in self.phone2id.items()}
|
118 |
from diffrhythm.g2p.g2p_generation import chn_eng_g2p
|
|
|
119 |
self.tokenizer = chn_eng_g2p
|
|
|
120 |
def encode(self, text):
|
121 |
phone, token = self.tokenizer(text)
|
122 |
-
token = [x+1 for x in token]
|
123 |
return token
|
|
|
124 |
def decode(self, token):
|
125 |
-
return "|".join([self.id2phone[x-1] for x in token])
|
126 |
-
|
|
|
127 |
def get_lrc_token(max_frames, text, tokenizer, device):
|
128 |
|
129 |
lyrics_shift = 0
|
130 |
sampling_rate = 44100
|
131 |
downsample_rate = 2048
|
132 |
max_secs = max_frames / (sampling_rate / downsample_rate)
|
133 |
-
|
134 |
-
pad_token_id = 0
|
135 |
comma_token_id = 1
|
136 |
-
period_token_id = 2
|
137 |
-
if text == "":
|
138 |
-
return torch.zeros((max_frames,), dtype=torch.long).unsqueeze(0).to(device), torch.tensor(0.).unsqueeze(0).to(device).half()
|
139 |
|
140 |
lrc_with_time = parse_lyrics(text)
|
141 |
-
|
142 |
modified_lrc_with_time = []
|
143 |
for i in range(len(lrc_with_time)):
|
144 |
time, line = lrc_with_time[i]
|
@@ -146,44 +428,49 @@ def get_lrc_token(max_frames, text, tokenizer, device):
|
|
146 |
modified_lrc_with_time.append((time, line_token))
|
147 |
lrc_with_time = modified_lrc_with_time
|
148 |
|
149 |
-
lrc_with_time = [
|
150 |
-
|
151 |
-
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
lrc = torch.zeros((max_frames,), dtype=torch.long)
|
155 |
|
156 |
tokens_count = 0
|
157 |
last_end_pos = 0
|
158 |
for time_start, line in lrc_with_time:
|
159 |
-
tokens = [
|
|
|
|
|
160 |
tokens = torch.tensor(tokens, dtype=torch.long)
|
161 |
num_tokens = tokens.shape[0]
|
162 |
|
163 |
gt_frame_start = int(time_start * sampling_rate / downsample_rate)
|
164 |
-
|
165 |
-
frame_shift = random.randint(int(lyrics_shift), int(lyrics_shift))
|
166 |
-
|
167 |
frame_start = max(gt_frame_start - frame_shift, last_end_pos)
|
168 |
frame_len = min(num_tokens, max_frames - frame_start)
|
169 |
|
170 |
-
|
171 |
-
|
172 |
-
lrc[frame_start:frame_start + frame_len] = tokens[:frame_len]
|
173 |
|
174 |
tokens_count += num_tokens
|
175 |
-
last_end_pos = frame_start + frame_len
|
176 |
-
|
177 |
lrc_emb = lrc.unsqueeze(0).to(device)
|
178 |
-
|
179 |
normalized_start_time = torch.tensor(normalized_start_time).unsqueeze(0).to(device)
|
180 |
normalized_start_time = normalized_start_time.half()
|
181 |
-
|
182 |
return lrc_emb, normalized_start_time
|
183 |
|
|
|
184 |
def load_checkpoint(model, ckpt_path, device, use_ema=True):
|
185 |
-
|
186 |
-
model = model.half()
|
187 |
|
188 |
ckpt_type = ckpt_path.split(".")[-1]
|
189 |
if ckpt_type == "safetensors":
|
@@ -207,4 +494,4 @@ def load_checkpoint(model, ckpt_path, device, use_ema=True):
|
|
207 |
checkpoint = {"model_state_dict": checkpoint}
|
208 |
model.load_state_dict(checkpoint["model_state_dict"], strict=False)
|
209 |
|
210 |
-
return model.to(device)
|
|
|
1 |
import torch
|
2 |
import librosa
|
3 |
+
import torchaudio
|
4 |
import random
|
5 |
import json
|
6 |
+
from muq import MuQMuLan, MuQ
|
7 |
from mutagen.mp3 import MP3
|
8 |
import os
|
9 |
import numpy as np
|
10 |
from huggingface_hub import hf_hub_download
|
11 |
+
from hydra.utils import instantiate
|
12 |
+
from omegaconf import OmegaConf
|
13 |
+
from safetensors.torch import load_file
|
14 |
+
|
15 |
from diffrhythm.model import DiT, CFM
|
16 |
|
17 |
+
def vae_sample(mean, scale):
|
18 |
+
stdev = torch.nn.functional.softplus(scale) + 1e-4
|
19 |
+
var = stdev * stdev
|
20 |
+
logvar = torch.log(var)
|
21 |
+
latents = torch.randn_like(mean) * stdev + mean
|
22 |
+
|
23 |
+
kl = (mean * mean + var - logvar - 1).sum(1).mean()
|
24 |
+
|
25 |
+
return latents, kl
|
26 |
+
|
27 |
+
def normalize_audio(y, target_dbfs=0):
|
28 |
+
max_amplitude = torch.max(torch.abs(y))
|
29 |
+
|
30 |
+
target_amplitude = 10.0**(target_dbfs / 20.0)
|
31 |
+
scale_factor = target_amplitude / max_amplitude
|
32 |
+
|
33 |
+
normalized_audio = y * scale_factor
|
34 |
+
|
35 |
+
return normalized_audio
|
36 |
+
|
37 |
+
def set_audio_channels(audio, target_channels):
|
38 |
+
if target_channels == 1:
|
39 |
+
# Convert to mono
|
40 |
+
audio = audio.mean(1, keepdim=True)
|
41 |
+
elif target_channels == 2:
|
42 |
+
# Convert to stereo
|
43 |
+
if audio.shape[1] == 1:
|
44 |
+
audio = audio.repeat(1, 2, 1)
|
45 |
+
elif audio.shape[1] > 2:
|
46 |
+
audio = audio[:, :2, :]
|
47 |
+
return audio
|
48 |
+
|
49 |
+
class PadCrop(torch.nn.Module):
|
50 |
+
def __init__(self, n_samples, randomize=True):
|
51 |
+
super().__init__()
|
52 |
+
self.n_samples = n_samples
|
53 |
+
self.randomize = randomize
|
54 |
+
|
55 |
+
def __call__(self, signal):
|
56 |
+
n, s = signal.shape
|
57 |
+
start = 0 if (not self.randomize) else torch.randint(0, max(0, s - self.n_samples) + 1, []).item()
|
58 |
+
end = start + self.n_samples
|
59 |
+
output = signal.new_zeros([n, self.n_samples])
|
60 |
+
output[:, :min(s, self.n_samples)] = signal[:, start:end]
|
61 |
+
return output
|
62 |
+
|
63 |
+
def prepare_audio(audio, in_sr, target_sr, target_length, target_channels, device):
|
64 |
+
|
65 |
+
audio = audio.to(device)
|
66 |
+
|
67 |
+
if in_sr != target_sr:
|
68 |
+
resample_tf = T.Resample(in_sr, target_sr).to(device)
|
69 |
+
audio = resample_tf(audio)
|
70 |
+
if target_length is None:
|
71 |
+
target_length = audio.shape[-1]
|
72 |
+
audio = PadCrop(target_length, randomize=False)(audio)
|
73 |
+
|
74 |
+
# Add batch dimension
|
75 |
+
if audio.dim() == 1:
|
76 |
+
audio = audio.unsqueeze(0).unsqueeze(0)
|
77 |
+
elif audio.dim() == 2:
|
78 |
+
audio = audio.unsqueeze(0)
|
79 |
+
|
80 |
+
audio = set_audio_channels(audio, target_channels)
|
81 |
+
|
82 |
+
return audio
|
83 |
+
|
84 |
+
def decode_audio(latents, vae_model, chunked=False, overlap=32, chunk_size=128):
|
85 |
+
downsampling_ratio = 2048
|
86 |
+
io_channels = 2
|
87 |
+
if not chunked:
|
88 |
+
return vae_model.decode_export(latents)
|
89 |
+
else:
|
90 |
+
# chunked decoding
|
91 |
+
hop_size = chunk_size - overlap
|
92 |
+
total_size = latents.shape[2]
|
93 |
+
batch_size = latents.shape[0]
|
94 |
+
chunks = []
|
95 |
+
i = 0
|
96 |
+
for i in range(0, total_size - chunk_size + 1, hop_size):
|
97 |
+
chunk = latents[:, :, i : i + chunk_size]
|
98 |
+
chunks.append(chunk)
|
99 |
+
if i + chunk_size != total_size:
|
100 |
+
# Final chunk
|
101 |
+
chunk = latents[:, :, -chunk_size:]
|
102 |
+
chunks.append(chunk)
|
103 |
+
chunks = torch.stack(chunks)
|
104 |
+
num_chunks = chunks.shape[0]
|
105 |
+
# samples_per_latent is just the downsampling ratio
|
106 |
+
samples_per_latent = downsampling_ratio
|
107 |
+
# Create an empty waveform, we will populate it with chunks as decode them
|
108 |
+
y_size = total_size * samples_per_latent
|
109 |
+
y_final = torch.zeros((batch_size, io_channels, y_size)).to(latents.device)
|
110 |
+
for i in range(num_chunks):
|
111 |
+
x_chunk = chunks[i, :]
|
112 |
+
# decode the chunk
|
113 |
+
y_chunk = vae_model.decode_export(x_chunk)
|
114 |
+
# figure out where to put the audio along the time domain
|
115 |
+
if i == num_chunks - 1:
|
116 |
+
# final chunk always goes at the end
|
117 |
+
t_end = y_size
|
118 |
+
t_start = t_end - y_chunk.shape[2]
|
119 |
+
else:
|
120 |
+
t_start = i * hop_size * samples_per_latent
|
121 |
+
t_end = t_start + chunk_size * samples_per_latent
|
122 |
+
# remove the edges of the overlaps
|
123 |
+
ol = (overlap // 2) * samples_per_latent
|
124 |
+
chunk_start = 0
|
125 |
+
chunk_end = y_chunk.shape[2]
|
126 |
+
if i > 0:
|
127 |
+
# no overlap for the start of the first chunk
|
128 |
+
t_start += ol
|
129 |
+
chunk_start += ol
|
130 |
+
if i < num_chunks - 1:
|
131 |
+
# no overlap for the end of the last chunk
|
132 |
+
t_end -= ol
|
133 |
+
chunk_end -= ol
|
134 |
+
# paste the chunked audio into our y_final output audio
|
135 |
+
y_final[:, :, t_start:t_end] = y_chunk[:, :, chunk_start:chunk_end]
|
136 |
+
return y_final
|
137 |
+
|
138 |
+
def encode_audio(audio, vae_model, chunked=False, overlap=32, chunk_size=128):
|
139 |
+
downsampling_ratio = 2048
|
140 |
+
latent_dim = 128
|
141 |
+
if not chunked:
|
142 |
+
# default behavior. Encode the entire audio in parallel
|
143 |
+
return vae_model.encode_export(audio)
|
144 |
+
else:
|
145 |
+
# CHUNKED ENCODING
|
146 |
+
# samples_per_latent is just the downsampling ratio (which is also the upsampling ratio)
|
147 |
+
samples_per_latent = downsampling_ratio
|
148 |
+
total_size = audio.shape[2] # in samples
|
149 |
+
batch_size = audio.shape[0]
|
150 |
+
chunk_size *= samples_per_latent # converting metric in latents to samples
|
151 |
+
overlap *= samples_per_latent # converting metric in latents to samples
|
152 |
+
hop_size = chunk_size - overlap
|
153 |
+
chunks = []
|
154 |
+
for i in range(0, total_size - chunk_size + 1, hop_size):
|
155 |
+
chunk = audio[:,:,i:i+chunk_size]
|
156 |
+
chunks.append(chunk)
|
157 |
+
if i+chunk_size != total_size:
|
158 |
+
# Final chunk
|
159 |
+
chunk = audio[:,:,-chunk_size:]
|
160 |
+
chunks.append(chunk)
|
161 |
+
chunks = torch.stack(chunks)
|
162 |
+
num_chunks = chunks.shape[0]
|
163 |
+
# Note: y_size might be a different value from the latent length used in diffusion training
|
164 |
+
# because we can encode audio of varying lengths
|
165 |
+
# However, the audio should've been padded to a multiple of samples_per_latent by now.
|
166 |
+
y_size = total_size // samples_per_latent
|
167 |
+
# Create an empty latent, we will populate it with chunks as we encode them
|
168 |
+
y_final = torch.zeros((batch_size,latent_dim,y_size)).to(audio.device)
|
169 |
+
for i in range(num_chunks):
|
170 |
+
x_chunk = chunks[i,:]
|
171 |
+
# encode the chunk
|
172 |
+
y_chunk = vae_model.encode_export(x_chunk)
|
173 |
+
# figure out where to put the audio along the time domain
|
174 |
+
if i == num_chunks-1:
|
175 |
+
# final chunk always goes at the end
|
176 |
+
t_end = y_size
|
177 |
+
t_start = t_end - y_chunk.shape[2]
|
178 |
+
else:
|
179 |
+
t_start = i * hop_size // samples_per_latent
|
180 |
+
t_end = t_start + chunk_size // samples_per_latent
|
181 |
+
# remove the edges of the overlaps
|
182 |
+
ol = overlap//samples_per_latent//2
|
183 |
+
chunk_start = 0
|
184 |
+
chunk_end = y_chunk.shape[2]
|
185 |
+
if i > 0:
|
186 |
+
# no overlap for the start of the first chunk
|
187 |
+
t_start += ol
|
188 |
+
chunk_start += ol
|
189 |
+
if i < num_chunks-1:
|
190 |
+
# no overlap for the end of the last chunk
|
191 |
+
t_end -= ol
|
192 |
+
chunk_end -= ol
|
193 |
+
# paste the chunked audio into our y_final output audio
|
194 |
+
y_final[:,:,t_start:t_end] = y_chunk[:,:,chunk_start:chunk_end]
|
195 |
+
return y_final
|
196 |
|
197 |
def prepare_model(device):
|
198 |
# prepare cfm model
|
199 |
+
|
200 |
+
dit_ckpt_path = hf_hub_download(repo_id="ASLP-lab/DiffRhythm-1_2", filename="cfm_model.pt")
|
201 |
+
dit_config_path = "./diffrhythm/config/config.json"
|
202 |
with open(dit_config_path) as f:
|
203 |
model_config = json.load(f)
|
204 |
dit_model_cls = DiT
|
205 |
cfm = CFM(
|
206 |
+
transformer=dit_model_cls(**model_config["model"], max_frames=2048),
|
207 |
num_channels=model_config["model"]['mel_dim'],
|
|
|
208 |
)
|
209 |
cfm = cfm.to(device)
|
210 |
cfm = load_checkpoint(cfm, dit_ckpt_path, device=device, use_ema=False)
|
211 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
# prepare tokenizer
|
213 |
tokenizer = CNENTokenizer()
|
214 |
+
|
215 |
# prepare muq
|
216 |
+
muq = MuQMuLan.from_pretrained("OpenMuQ/MuQ-MuLan-large", cache_dir="./pretrained")
|
217 |
muq = muq.to(device).eval()
|
218 |
+
|
219 |
# prepare vae
|
220 |
vae_ckpt_path = hf_hub_download(repo_id="ASLP-lab/DiffRhythm-vae", filename="vae_model.pt")
|
221 |
+
vae = torch.jit.load(vae_ckpt_path, map_location="cpu").to(device)
|
222 |
+
|
223 |
|
224 |
+
# prepare eval model
|
225 |
+
train_config = OmegaConf.load("./pretrained/eval.yaml")
|
226 |
+
checkpoint_path = "./pretrained/eval.safetensors"
|
227 |
+
|
228 |
+
eval_model = instantiate(train_config.generator).to(device).eval()
|
229 |
+
state_dict = load_file(checkpoint_path, device="cpu")
|
230 |
+
eval_model.load_state_dict(state_dict)
|
231 |
+
|
232 |
+
eval_muq = MuQ.from_pretrained("OpenMuQ/MuQ-large-msd-iter")
|
233 |
+
eval_muq = eval_muq.to(device).eval()
|
234 |
+
|
235 |
+
return cfm, tokenizer, muq, vae, eval_model, eval_muq
|
236 |
|
237 |
|
238 |
# for song edit, will be added in the future
|
239 |
+
def get_reference_latent(device, max_frames, edit, pred_segments, ref_song, vae_model):
|
240 |
+
sampling_rate = 44100
|
241 |
+
downsample_rate = 2048
|
242 |
+
io_channels = 2
|
243 |
+
if edit:
|
244 |
+
input_audio, in_sr = torchaudio.load(ref_song)
|
245 |
+
input_audio = prepare_audio(input_audio, in_sr=in_sr, target_sr=sampling_rate, target_length=None, target_channels=io_channels, device=device)
|
246 |
+
input_audio = normalize_audio(input_audio, -6)
|
247 |
+
|
248 |
+
with torch.no_grad():
|
249 |
+
latent = encode_audio(input_audio, vae_model, chunked=True) # [b d t]
|
250 |
+
mean, scale = latent.chunk(2, dim=1)
|
251 |
+
prompt, _ = vae_sample(mean, scale)
|
252 |
+
prompt = prompt.transpose(1, 2) # [b t d]
|
253 |
+
|
254 |
+
pred_segments = json.loads(pred_segments)
|
255 |
+
# import pdb; pdb.set_trace()
|
256 |
+
pred_frames = []
|
257 |
+
for st, et in pred_segments:
|
258 |
+
sf = 0 if st == -1 else int(st * sampling_rate / downsample_rate)
|
259 |
+
# if st == -1:
|
260 |
+
# sf = 0
|
261 |
+
# else:
|
262 |
+
# sf = int(st * sampling_rate / downsample_rate )
|
263 |
+
|
264 |
+
ef = max_frames if et == -1 else int(et * sampling_rate / downsample_rate)
|
265 |
+
# if et == -1:
|
266 |
+
# ef = max_frames
|
267 |
+
# else:
|
268 |
+
# ef = int(et * sampling_rate / downsample_rate )
|
269 |
+
pred_frames.append((sf, ef))
|
270 |
+
# import pdb; pdb.set_trace()
|
271 |
+
return prompt, pred_frames
|
272 |
+
else:
|
273 |
+
prompt = torch.zeros(1, max_frames, 64).to(device)
|
274 |
+
pred_frames = [(0, max_frames)]
|
275 |
+
return prompt, pred_frames
|
276 |
+
|
277 |
|
278 |
def get_negative_style_prompt(device):
|
279 |
file_path = "./src/negative_prompt.npy"
|
280 |
vocal_stlye = np.load(file_path)
|
281 |
+
|
282 |
+
vocal_stlye = torch.from_numpy(vocal_stlye).to(device) # [1, 512]
|
283 |
vocal_stlye = vocal_stlye.half()
|
284 |
+
|
285 |
return vocal_stlye
|
286 |
|
287 |
+
@torch.no_grad()
|
288 |
+
def eval_song(eval_model, eval_muq, songs):
|
289 |
+
|
290 |
+
resampled_songs = [torchaudio.functional.resample(song.mean(dim=0, keepdim=True), 44100, 24000) for song in songs]
|
291 |
+
ssl_list = []
|
292 |
+
for i in range(len(resampled_songs)):
|
293 |
+
output = eval_muq(resampled_songs[i], output_hidden_states=True)
|
294 |
+
muq_ssl = output["hidden_states"][6]
|
295 |
+
ssl_list.append(muq_ssl.squeeze(0))
|
296 |
+
|
297 |
+
ssl = torch.stack(ssl_list)
|
298 |
+
scores_g = eval_model(ssl)
|
299 |
+
score = torch.mean(scores_g, dim=1)
|
300 |
+
idx = score.argmax(dim=0)
|
301 |
+
|
302 |
+
return songs[idx]
|
303 |
+
|
304 |
+
|
305 |
+
@torch.no_grad()
|
306 |
def get_audio_style_prompt(model, wav_path):
|
307 |
vocal_flag = False
|
308 |
mulan = model
|
|
|
327 |
|
328 |
return audio_emb, vocal_flag
|
329 |
|
330 |
+
|
331 |
+
@torch.no_grad()
|
332 |
def get_text_style_prompt(model, text_prompt):
|
333 |
mulan = model
|
334 |
|
|
|
339 |
return text_emb
|
340 |
|
341 |
|
342 |
+
@torch.no_grad()
|
343 |
+
def get_style_prompt(model, wav_path=None, prompt=None):
|
344 |
+
mulan = model
|
345 |
+
|
346 |
+
if prompt is not None:
|
347 |
+
return mulan(texts=prompt).half()
|
348 |
+
|
349 |
+
ext = os.path.splitext(wav_path)[-1].lower()
|
350 |
+
if ext == ".mp3":
|
351 |
+
meta = MP3(wav_path)
|
352 |
+
audio_len = meta.info.length
|
353 |
+
elif ext in [".wav", ".flac"]:
|
354 |
+
audio_len = librosa.get_duration(path=wav_path)
|
355 |
+
else:
|
356 |
+
raise ValueError("Unsupported file format: {}".format(ext))
|
357 |
+
|
358 |
+
if audio_len < 10:
|
359 |
+
print(
|
360 |
+
f"Warning: The audio file {wav_path} is too short ({audio_len:.2f} seconds). Expected at least 10 seconds."
|
361 |
+
)
|
362 |
+
|
363 |
+
assert audio_len >= 10
|
364 |
+
|
365 |
+
mid_time = audio_len // 2
|
366 |
+
start_time = mid_time - 5
|
367 |
+
wav, _ = librosa.load(wav_path, sr=24000, offset=start_time, duration=10)
|
368 |
+
|
369 |
+
wav = torch.tensor(wav).unsqueeze(0).to(model.device)
|
370 |
+
|
371 |
+
with torch.no_grad():
|
372 |
+
audio_emb = mulan(wavs=wav) # [1, 512]
|
373 |
+
|
374 |
+
audio_emb = audio_emb
|
375 |
+
audio_emb = audio_emb.half()
|
376 |
+
|
377 |
+
return audio_emb
|
378 |
|
379 |
def parse_lyrics(lyrics: str):
|
380 |
lyrics_with_time = []
|
381 |
lyrics = lyrics.strip()
|
382 |
+
for line in lyrics.split("\n"):
|
383 |
try:
|
384 |
time, lyric = line[1:9], line[10:]
|
385 |
lyric = lyric.strip()
|
386 |
+
mins, secs = time.split(":")
|
387 |
secs = int(mins) * 60 + float(secs)
|
388 |
lyrics_with_time.append((secs, lyric))
|
389 |
except:
|
390 |
continue
|
391 |
return lyrics_with_time
|
392 |
|
393 |
+
|
394 |
+
class CNENTokenizer:
|
395 |
def __init__(self):
|
396 |
+
with open("./diffrhythm/g2p/g2p/vocab.json", "r", encoding='utf-8') as file:
|
397 |
+
self.phone2id: dict = json.load(file)["vocab"]
|
398 |
+
self.id2phone = {v: k for (k, v) in self.phone2id.items()}
|
399 |
from diffrhythm.g2p.g2p_generation import chn_eng_g2p
|
400 |
+
|
401 |
self.tokenizer = chn_eng_g2p
|
402 |
+
|
403 |
def encode(self, text):
|
404 |
phone, token = self.tokenizer(text)
|
405 |
+
token = [x + 1 for x in token]
|
406 |
return token
|
407 |
+
|
408 |
def decode(self, token):
|
409 |
+
return "|".join([self.id2phone[x - 1] for x in token])
|
410 |
+
|
411 |
+
|
412 |
def get_lrc_token(max_frames, text, tokenizer, device):
|
413 |
|
414 |
lyrics_shift = 0
|
415 |
sampling_rate = 44100
|
416 |
downsample_rate = 2048
|
417 |
max_secs = max_frames / (sampling_rate / downsample_rate)
|
418 |
+
|
|
|
419 |
comma_token_id = 1
|
420 |
+
period_token_id = 2
|
|
|
|
|
421 |
|
422 |
lrc_with_time = parse_lyrics(text)
|
423 |
+
|
424 |
modified_lrc_with_time = []
|
425 |
for i in range(len(lrc_with_time)):
|
426 |
time, line = lrc_with_time[i]
|
|
|
428 |
modified_lrc_with_time.append((time, line_token))
|
429 |
lrc_with_time = modified_lrc_with_time
|
430 |
|
431 |
+
lrc_with_time = [
|
432 |
+
(time_start, line)
|
433 |
+
for (time_start, line) in lrc_with_time
|
434 |
+
if time_start < max_secs
|
435 |
+
]
|
436 |
+
if max_frames == 2048:
|
437 |
+
lrc_with_time = lrc_with_time[:-1] if len(lrc_with_time) >= 1 else lrc_with_time
|
438 |
+
|
439 |
+
normalized_start_time = 0.0
|
440 |
|
441 |
lrc = torch.zeros((max_frames,), dtype=torch.long)
|
442 |
|
443 |
tokens_count = 0
|
444 |
last_end_pos = 0
|
445 |
for time_start, line in lrc_with_time:
|
446 |
+
tokens = [
|
447 |
+
token if token != period_token_id else comma_token_id for token in line
|
448 |
+
] + [period_token_id]
|
449 |
tokens = torch.tensor(tokens, dtype=torch.long)
|
450 |
num_tokens = tokens.shape[0]
|
451 |
|
452 |
gt_frame_start = int(time_start * sampling_rate / downsample_rate)
|
453 |
+
|
454 |
+
frame_shift = random.randint(int(-lyrics_shift), int(lyrics_shift))
|
455 |
+
|
456 |
frame_start = max(gt_frame_start - frame_shift, last_end_pos)
|
457 |
frame_len = min(num_tokens, max_frames - frame_start)
|
458 |
|
459 |
+
lrc[frame_start : frame_start + frame_len] = tokens[:frame_len]
|
|
|
|
|
460 |
|
461 |
tokens_count += num_tokens
|
462 |
+
last_end_pos = frame_start + frame_len
|
463 |
+
|
464 |
lrc_emb = lrc.unsqueeze(0).to(device)
|
465 |
+
|
466 |
normalized_start_time = torch.tensor(normalized_start_time).unsqueeze(0).to(device)
|
467 |
normalized_start_time = normalized_start_time.half()
|
468 |
+
|
469 |
return lrc_emb, normalized_start_time
|
470 |
|
471 |
+
|
472 |
def load_checkpoint(model, ckpt_path, device, use_ema=True):
|
473 |
+
model = model.half()
|
|
|
474 |
|
475 |
ckpt_type = ckpt_path.split(".")[-1]
|
476 |
if ckpt_type == "safetensors":
|
|
|
494 |
checkpoint = {"model_state_dict": checkpoint}
|
495 |
model.load_state_dict(checkpoint["model_state_dict"], strict=False)
|
496 |
|
497 |
+
return model.to(device)
|
diffrhythm/model/__pycache__/__init__.cpython-310.pyc
DELETED
Binary file (290 Bytes)
|
|
diffrhythm/model/__pycache__/__init__.cpython-312.pyc
DELETED
Binary file (508 Bytes)
|
|
diffrhythm/model/__pycache__/cfm.cpython-310.pyc
DELETED
Binary file (6.28 kB)
|
|
diffrhythm/model/__pycache__/cfm.cpython-312.pyc
DELETED
Binary file (10.7 kB)
|
|
diffrhythm/model/__pycache__/custom_dataset.cpython-310.pyc
DELETED
Binary file (11.5 kB)
|
|
diffrhythm/model/__pycache__/custom_dataset_lrc_emb.cpython-310.pyc
DELETED
Binary file (10.5 kB)
|
|
diffrhythm/model/__pycache__/dataset.cpython-310.pyc
DELETED
Binary file (8.04 kB)
|
|
diffrhythm/model/__pycache__/dit.cpython-310.pyc
DELETED
Binary file (5.61 kB)
|
|
diffrhythm/model/__pycache__/modules.cpython-310.pyc
DELETED
Binary file (15.9 kB)
|
|
diffrhythm/model/__pycache__/trainer.cpython-310.pyc
DELETED
Binary file (9.13 kB)
|
|
diffrhythm/model/__pycache__/utils.cpython-310.pyc
DELETED
Binary file (6.03 kB)
|
|
diffrhythm/model/cfm.py
CHANGED
@@ -1,10 +1,22 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
"""
|
9 |
|
10 |
from __future__ import annotations
|
@@ -19,9 +31,7 @@ from torch.nn.utils.rnn import pad_sequence
|
|
19 |
|
20 |
from torchdiffeq import odeint
|
21 |
|
22 |
-
from diffrhythm.model.modules import MelSpec
|
23 |
from diffrhythm.model.utils import (
|
24 |
-
default,
|
25 |
exists,
|
26 |
list_str_to_idx,
|
27 |
list_str_to_tensor,
|
@@ -29,12 +39,25 @@ from diffrhythm.model.utils import (
|
|
29 |
mask_from_frac_lengths,
|
30 |
)
|
31 |
|
32 |
-
def custom_mask_from_start_end_indices(
|
|
|
|
|
|
|
|
|
|
|
33 |
max_seq_len = max_seq_len
|
34 |
seq = torch.arange(max_seq_len, device=device).long()
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
class CFM(nn.Module):
|
40 |
def __init__(
|
@@ -42,7 +65,7 @@ class CFM(nn.Module):
|
|
42 |
transformer: nn.Module,
|
43 |
sigma=0.0,
|
44 |
odeint_kwargs: dict = dict(
|
45 |
-
method="euler"
|
46 |
),
|
47 |
odeint_options: dict = dict(
|
48 |
min_step=0.05
|
@@ -54,7 +77,7 @@ class CFM(nn.Module):
|
|
54 |
num_channels=None,
|
55 |
frac_lengths_mask: tuple[float, float] = (0.7, 1.0),
|
56 |
vocab_char_map: dict[str:int] | None = None,
|
57 |
-
|
58 |
):
|
59 |
super().__init__()
|
60 |
|
@@ -83,8 +106,8 @@ class CFM(nn.Module):
|
|
83 |
|
84 |
# vocab map for tokenization
|
85 |
self.vocab_char_map = vocab_char_map
|
86 |
-
|
87 |
-
self.
|
88 |
|
89 |
@property
|
90 |
def device(self):
|
@@ -112,10 +135,10 @@ class CFM(nn.Module):
|
|
112 |
t_inter=0.1,
|
113 |
edit_mask=None,
|
114 |
start_time=None,
|
115 |
-
|
116 |
-
latent_pred_end_frame=2048,
|
117 |
vocal_flag=False,
|
118 |
-
odeint_method="euler"
|
|
|
119 |
):
|
120 |
self.eval()
|
121 |
|
@@ -125,7 +148,6 @@ class CFM(nn.Module):
|
|
125 |
cond = cond.half()
|
126 |
|
127 |
# raw wave
|
128 |
-
|
129 |
if cond.shape[1] > duration:
|
130 |
cond = cond[:, :duration, :]
|
131 |
|
@@ -139,7 +161,6 @@ class CFM(nn.Module):
|
|
139 |
lens = torch.full((batch,), cond_seq_len, device=device, dtype=torch.long)
|
140 |
|
141 |
# text
|
142 |
-
|
143 |
if isinstance(text, list):
|
144 |
if exists(self.vocab_char_map):
|
145 |
text = list_str_to_idx(text, self.vocab_char_map).to(device)
|
@@ -147,26 +168,18 @@ class CFM(nn.Module):
|
|
147 |
text = list_str_to_tensor(text).to(device)
|
148 |
assert text.shape[0] == batch
|
149 |
|
150 |
-
if exists(text):
|
151 |
-
text_lens = (text != -1).sum(dim=-1)
|
152 |
-
|
153 |
-
|
154 |
# duration
|
155 |
cond_mask = lens_to_mask(lens)
|
156 |
if edit_mask is not None:
|
157 |
cond_mask = cond_mask & edit_mask
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
latent_pred_end_frame = torch.tensor([latent_pred_end_frame]).to(cond.device)
|
162 |
-
fixed_span_mask = custom_mask_from_start_end_indices(cond_seq_len, latent_pred_start_frame, latent_pred_end_frame, device=cond.device, max_seq_len=duration)
|
163 |
-
|
164 |
fixed_span_mask = fixed_span_mask.unsqueeze(-1)
|
165 |
step_cond = torch.where(fixed_span_mask, torch.zeros_like(cond), cond)
|
166 |
|
167 |
if isinstance(duration, int):
|
168 |
-
duration = torch.full((
|
169 |
-
|
170 |
|
171 |
duration = duration.clamp(max=max_duration)
|
172 |
max_duration = duration.amax()
|
@@ -175,7 +188,6 @@ class CFM(nn.Module):
|
|
175 |
if duplicate_test:
|
176 |
test_cond = F.pad(cond, (0, 0, cond_seq_len, max_duration - 2 * cond_seq_len), value=0.0)
|
177 |
|
178 |
-
|
179 |
if batch > 1:
|
180 |
mask = lens_to_mask(duration)
|
181 |
else: # save memory and speed up, as single inference need no mask currently
|
@@ -184,20 +196,27 @@ class CFM(nn.Module):
|
|
184 |
# test for no ref audio
|
185 |
if no_ref_audio:
|
186 |
cond = torch.zeros_like(cond)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
start_time_embed, positive_text_embed, positive_text_residuals = self.transformer.forward_timestep_invariant(text, step_cond.shape[1], drop_text=False, start_time=start_time)
|
189 |
_, negative_text_embed, negative_text_residuals = self.transformer.forward_timestep_invariant(text, step_cond.shape[1], drop_text=True, start_time=start_time)
|
190 |
|
191 |
-
if vocal_flag:
|
192 |
-
style_prompt = negative_style_prompt
|
193 |
-
negative_style_prompt = torch.zeros_like(style_prompt)
|
194 |
-
|
195 |
text_embed = torch.cat([positive_text_embed, negative_text_embed], 0)
|
196 |
text_residuals = [torch.cat([a, b], 0) for a, b in zip(positive_text_residuals, negative_text_residuals)]
|
197 |
step_cond = torch.cat([step_cond, step_cond], 0)
|
198 |
style_prompt = torch.cat([style_prompt, negative_style_prompt], 0)
|
199 |
start_time_embed = torch.cat([start_time_embed, start_time_embed], 0)
|
200 |
-
|
201 |
|
202 |
def fn(t, x):
|
203 |
x = torch.cat([x, x], 0)
|
@@ -228,7 +247,7 @@ class CFM(nn.Module):
|
|
228 |
t_start = t_inter
|
229 |
y0 = (1 - t_start) * y0 + t_start * test_cond
|
230 |
steps = int(steps * (1 - t_start))
|
231 |
-
|
232 |
t = torch.linspace(t_start, 1, steps, device=self.device, dtype=step_cond.dtype)
|
233 |
if sway_sampling_coef is not None:
|
234 |
t = t + sway_sampling_coef * (torch.cos(torch.pi / 2 * t) - 1 + t)
|
@@ -243,6 +262,7 @@ class CFM(nn.Module):
|
|
243 |
out = out.permute(0, 2, 1)
|
244 |
out = vocoder(out)
|
245 |
|
|
|
246 |
return out, trajectory
|
247 |
|
248 |
def forward(
|
@@ -267,11 +287,10 @@ class CFM(nn.Module):
|
|
267 |
|
268 |
# get a random span to mask out for training conditionally
|
269 |
frac_lengths = torch.zeros((batch,), device=self.device).float().uniform_(*self.frac_lengths_mask)
|
270 |
-
rand_span_mask = mask_from_frac_lengths(lens, frac_lengths)
|
271 |
|
272 |
if exists(mask):
|
273 |
rand_span_mask = mask
|
274 |
-
# rand_span_mask &= mask
|
275 |
|
276 |
# mel is x1
|
277 |
x1 = inp
|
@@ -301,7 +320,7 @@ class CFM(nn.Module):
|
|
301 |
# adding mask will use more memory, thus also need to adjust batchsampler with scaled down threshold for long sequences
|
302 |
pred = self.transformer(
|
303 |
x=φ, cond=cond, text=text, time=time, drop_audio_cond=drop_audio_cond, drop_text=drop_text, drop_prompt=drop_prompt,
|
304 |
-
style_prompt=style_prompt,
|
305 |
)
|
306 |
|
307 |
# flow matching loss
|
|
|
1 |
+
# Copyright (c) 2025 ASLP-LAB
|
2 |
+
# 2025 Ziqian Ning (ningziqian@mail.nwpu.edu.cn)
|
3 |
+
# 2025 Huakang Chen (huakang@mail.nwpu.edu.cn)
|
4 |
+
# 2025 Guobin Ma (guobin.ma@mail.nwpu.edu.cn)
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
|
18 |
+
""" This implementation is adapted from github repo:
|
19 |
+
https://github.com/SWivid/F5-TTS.
|
20 |
"""
|
21 |
|
22 |
from __future__ import annotations
|
|
|
31 |
|
32 |
from torchdiffeq import odeint
|
33 |
|
|
|
34 |
from diffrhythm.model.utils import (
|
|
|
35 |
exists,
|
36 |
list_str_to_idx,
|
37 |
list_str_to_tensor,
|
|
|
39 |
mask_from_frac_lengths,
|
40 |
)
|
41 |
|
42 |
+
def custom_mask_from_start_end_indices(
|
43 |
+
seq_len: int["b"], # noqa: F821
|
44 |
+
latent_pred_segments,
|
45 |
+
device,
|
46 |
+
max_seq_len
|
47 |
+
):
|
48 |
max_seq_len = max_seq_len
|
49 |
seq = torch.arange(max_seq_len, device=device).long()
|
50 |
+
|
51 |
+
res_mask = torch.zeros(max_seq_len, device=device, dtype=torch.bool)
|
52 |
+
|
53 |
+
for start, end in latent_pred_segments:
|
54 |
+
start = start.unsqueeze(0)
|
55 |
+
end = end.unsqueeze(0)
|
56 |
+
start_mask = seq[None, :] >= start[:, None]
|
57 |
+
end_mask = seq[None, :] < end[:, None]
|
58 |
+
res_mask = res_mask | (start_mask & end_mask)
|
59 |
+
|
60 |
+
return res_mask
|
61 |
|
62 |
class CFM(nn.Module):
|
63 |
def __init__(
|
|
|
65 |
transformer: nn.Module,
|
66 |
sigma=0.0,
|
67 |
odeint_kwargs: dict = dict(
|
68 |
+
method="euler"
|
69 |
),
|
70 |
odeint_options: dict = dict(
|
71 |
min_step=0.05
|
|
|
77 |
num_channels=None,
|
78 |
frac_lengths_mask: tuple[float, float] = (0.7, 1.0),
|
79 |
vocab_char_map: dict[str:int] | None = None,
|
80 |
+
max_frames=2048
|
81 |
):
|
82 |
super().__init__()
|
83 |
|
|
|
106 |
|
107 |
# vocab map for tokenization
|
108 |
self.vocab_char_map = vocab_char_map
|
109 |
+
|
110 |
+
self.max_frames = max_frames
|
111 |
|
112 |
@property
|
113 |
def device(self):
|
|
|
135 |
t_inter=0.1,
|
136 |
edit_mask=None,
|
137 |
start_time=None,
|
138 |
+
latent_pred_segments=None,
|
|
|
139 |
vocal_flag=False,
|
140 |
+
odeint_method="euler",
|
141 |
+
batch_infer_num=5
|
142 |
):
|
143 |
self.eval()
|
144 |
|
|
|
148 |
cond = cond.half()
|
149 |
|
150 |
# raw wave
|
|
|
151 |
if cond.shape[1] > duration:
|
152 |
cond = cond[:, :duration, :]
|
153 |
|
|
|
161 |
lens = torch.full((batch,), cond_seq_len, device=device, dtype=torch.long)
|
162 |
|
163 |
# text
|
|
|
164 |
if isinstance(text, list):
|
165 |
if exists(self.vocab_char_map):
|
166 |
text = list_str_to_idx(text, self.vocab_char_map).to(device)
|
|
|
168 |
text = list_str_to_tensor(text).to(device)
|
169 |
assert text.shape[0] == batch
|
170 |
|
|
|
|
|
|
|
|
|
171 |
# duration
|
172 |
cond_mask = lens_to_mask(lens)
|
173 |
if edit_mask is not None:
|
174 |
cond_mask = cond_mask & edit_mask
|
175 |
|
176 |
+
latent_pred_segments = torch.tensor(latent_pred_segments).to(cond.device)
|
177 |
+
fixed_span_mask = custom_mask_from_start_end_indices(cond_seq_len, latent_pred_segments, device=cond.device, max_seq_len=duration)
|
|
|
|
|
|
|
178 |
fixed_span_mask = fixed_span_mask.unsqueeze(-1)
|
179 |
step_cond = torch.where(fixed_span_mask, torch.zeros_like(cond), cond)
|
180 |
|
181 |
if isinstance(duration, int):
|
182 |
+
duration = torch.full((batch_infer_num,), duration, device=device, dtype=torch.long)
|
|
|
183 |
|
184 |
duration = duration.clamp(max=max_duration)
|
185 |
max_duration = duration.amax()
|
|
|
188 |
if duplicate_test:
|
189 |
test_cond = F.pad(cond, (0, 0, cond_seq_len, max_duration - 2 * cond_seq_len), value=0.0)
|
190 |
|
|
|
191 |
if batch > 1:
|
192 |
mask = lens_to_mask(duration)
|
193 |
else: # save memory and speed up, as single inference need no mask currently
|
|
|
196 |
# test for no ref audio
|
197 |
if no_ref_audio:
|
198 |
cond = torch.zeros_like(cond)
|
199 |
+
|
200 |
+
if vocal_flag:
|
201 |
+
style_prompt = negative_style_prompt
|
202 |
+
negative_style_prompt = torch.zeros_like(style_prompt)
|
203 |
+
|
204 |
+
cond = cond.repeat(batch_infer_num, 1, 1)
|
205 |
+
step_cond = step_cond.repeat(batch_infer_num, 1, 1)
|
206 |
+
text = text.repeat(batch_infer_num, 1)
|
207 |
+
style_prompt = style_prompt.repeat(batch_infer_num, 1)
|
208 |
+
negative_style_prompt = negative_style_prompt.repeat(batch_infer_num, 1)
|
209 |
+
start_time = start_time.repeat(batch_infer_num)
|
210 |
+
fixed_span_mask = fixed_span_mask.repeat(batch_infer_num, 1, 1)
|
211 |
|
212 |
start_time_embed, positive_text_embed, positive_text_residuals = self.transformer.forward_timestep_invariant(text, step_cond.shape[1], drop_text=False, start_time=start_time)
|
213 |
_, negative_text_embed, negative_text_residuals = self.transformer.forward_timestep_invariant(text, step_cond.shape[1], drop_text=True, start_time=start_time)
|
214 |
|
|
|
|
|
|
|
|
|
215 |
text_embed = torch.cat([positive_text_embed, negative_text_embed], 0)
|
216 |
text_residuals = [torch.cat([a, b], 0) for a, b in zip(positive_text_residuals, negative_text_residuals)]
|
217 |
step_cond = torch.cat([step_cond, step_cond], 0)
|
218 |
style_prompt = torch.cat([style_prompt, negative_style_prompt], 0)
|
219 |
start_time_embed = torch.cat([start_time_embed, start_time_embed], 0)
|
|
|
220 |
|
221 |
def fn(t, x):
|
222 |
x = torch.cat([x, x], 0)
|
|
|
247 |
t_start = t_inter
|
248 |
y0 = (1 - t_start) * y0 + t_start * test_cond
|
249 |
steps = int(steps * (1 - t_start))
|
250 |
+
|
251 |
t = torch.linspace(t_start, 1, steps, device=self.device, dtype=step_cond.dtype)
|
252 |
if sway_sampling_coef is not None:
|
253 |
t = t + sway_sampling_coef * (torch.cos(torch.pi / 2 * t) - 1 + t)
|
|
|
262 |
out = out.permute(0, 2, 1)
|
263 |
out = vocoder(out)
|
264 |
|
265 |
+
out = torch.chunk(out, batch_infer_num, dim=0)
|
266 |
return out, trajectory
|
267 |
|
268 |
def forward(
|
|
|
287 |
|
288 |
# get a random span to mask out for training conditionally
|
289 |
frac_lengths = torch.zeros((batch,), device=self.device).float().uniform_(*self.frac_lengths_mask)
|
290 |
+
rand_span_mask = mask_from_frac_lengths(lens, frac_lengths, self.max_frames)
|
291 |
|
292 |
if exists(mask):
|
293 |
rand_span_mask = mask
|
|
|
294 |
|
295 |
# mel is x1
|
296 |
x1 = inp
|
|
|
320 |
# adding mask will use more memory, thus also need to adjust batchsampler with scaled down threshold for long sequences
|
321 |
pred = self.transformer(
|
322 |
x=φ, cond=cond, text=text, time=time, drop_audio_cond=drop_audio_cond, drop_text=drop_text, drop_prompt=drop_prompt,
|
323 |
+
style_prompt=style_prompt, start_time=start_time
|
324 |
)
|
325 |
|
326 |
# flow matching loss
|
diffrhythm/model/dit.py
CHANGED
@@ -1,10 +1,22 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
"""
|
9 |
|
10 |
from __future__ import annotations
|
@@ -12,22 +24,19 @@ from __future__ import annotations
|
|
12 |
import torch
|
13 |
from torch import nn
|
14 |
import torch
|
15 |
-
|
16 |
from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaRotaryEmbedding
|
17 |
from transformers.models.llama import LlamaConfig
|
18 |
-
from torch.utils.checkpoint import checkpoint
|
19 |
|
20 |
from diffrhythm.model.modules import (
|
21 |
TimestepEmbedding,
|
22 |
ConvNeXtV2Block,
|
23 |
ConvPositionEmbedding,
|
24 |
-
DiTBlock,
|
25 |
AdaLayerNormZero_Final,
|
26 |
precompute_freqs_cis,
|
27 |
get_pos_embed_indices,
|
|
|
28 |
)
|
29 |
-
# from liger_kernel.transformers import apply_liger_kernel_to_llama
|
30 |
-
# apply_liger_kernel_to_llama()
|
31 |
|
32 |
# Text embedding
|
33 |
class TextEmbedding(nn.Module):
|
@@ -77,7 +86,6 @@ class InputEmbedding(nn.Module):
|
|
77 |
def forward(self, x: float["b n d"], cond: float["b n d"], text_embed: float["b n d"], style_emb, time_emb, drop_audio_cond=False): # noqa: F722
|
78 |
if drop_audio_cond: # cfg for cond audio
|
79 |
cond = torch.zeros_like(cond)
|
80 |
-
|
81 |
style_emb = style_emb.unsqueeze(1).repeat(1, x.shape[1], 1)
|
82 |
time_emb = time_emb.unsqueeze(1).repeat(1, x.shape[1], 1)
|
83 |
x = self.proj(torch.cat((x, cond, text_embed, style_emb, time_emb), dim=-1))
|
@@ -85,9 +93,7 @@ class InputEmbedding(nn.Module):
|
|
85 |
return x
|
86 |
|
87 |
|
88 |
-
# Transformer backbone using
|
89 |
-
|
90 |
-
|
91 |
class DiT(nn.Module):
|
92 |
def __init__(
|
93 |
self,
|
@@ -103,26 +109,25 @@ class DiT(nn.Module):
|
|
103 |
text_dim=None,
|
104 |
conv_layers=0,
|
105 |
long_skip_connection=False,
|
106 |
-
|
107 |
-
max_pos=2048,
|
108 |
):
|
109 |
super().__init__()
|
|
|
|
|
110 |
|
111 |
cond_dim = 512
|
112 |
self.time_embed = TimestepEmbedding(cond_dim)
|
113 |
self.start_time_embed = TimestepEmbedding(cond_dim)
|
114 |
if text_dim is None:
|
115 |
text_dim = mel_dim
|
116 |
-
self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers=conv_layers, max_pos=
|
117 |
self.input_embed = InputEmbedding(mel_dim, text_dim, dim, cond_dim=cond_dim)
|
118 |
|
119 |
-
|
120 |
self.dim = dim
|
121 |
self.depth = depth
|
122 |
|
123 |
-
llama_config = LlamaConfig(hidden_size=dim, intermediate_size=dim * ff_mult, hidden_act='silu', max_position_embeddings=
|
124 |
llama_config._attn_implementation = 'sdpa'
|
125 |
-
|
126 |
self.transformer_blocks = nn.ModuleList(
|
127 |
[LlamaDecoderLayer(llama_config, layer_idx=i) for i in range(depth)]
|
128 |
)
|
@@ -144,7 +149,6 @@ class DiT(nn.Module):
|
|
144 |
self.norm_out = AdaLayerNormZero_Final(dim, cond_dim) # final modulation
|
145 |
self.proj_out = nn.Linear(dim, mel_dim)
|
146 |
|
147 |
-
|
148 |
def forward_timestep_invariant(self, text, seq_len, drop_text, start_time):
|
149 |
s_t = self.start_time_embed(start_time)
|
150 |
text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
|
@@ -187,11 +191,22 @@ class DiT(nn.Module):
|
|
187 |
pos_ids = torch.arange(x.shape[1], device=x.device)
|
188 |
pos_ids = pos_ids.unsqueeze(0).repeat(x.shape[0], 1)
|
189 |
rotary_embed = self.rotary_emb(x, pos_ids)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
for i, block in enumerate(self.transformer_blocks):
|
192 |
-
x, *_ = block(x, position_embeddings=rotary_embed)
|
193 |
if i < self.depth // 2:
|
194 |
-
x = x +
|
195 |
|
196 |
if self.long_skip_connection is not None:
|
197 |
x = self.long_skip_connection(torch.cat((x, residual), dim=-1))
|
|
|
1 |
+
# Copyright (c) 2025 ASLP-LAB
|
2 |
+
# 2025 Ziqian Ning (ningziqian@mail.nwpu.edu.cn)
|
3 |
+
# 2025 Huakang Chen (huakang@mail.nwpu.edu.cn)
|
4 |
+
# 2025 Yuepeng Jiang (Jiangyp@mail.nwpu.edu.cn)
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
|
18 |
+
""" This implementation is adapted from github repo:
|
19 |
+
https://github.com/SWivid/F5-TTS.
|
20 |
"""
|
21 |
|
22 |
from __future__ import annotations
|
|
|
24 |
import torch
|
25 |
from torch import nn
|
26 |
import torch
|
27 |
+
|
28 |
from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaRotaryEmbedding
|
29 |
from transformers.models.llama import LlamaConfig
|
|
|
30 |
|
31 |
from diffrhythm.model.modules import (
|
32 |
TimestepEmbedding,
|
33 |
ConvNeXtV2Block,
|
34 |
ConvPositionEmbedding,
|
|
|
35 |
AdaLayerNormZero_Final,
|
36 |
precompute_freqs_cis,
|
37 |
get_pos_embed_indices,
|
38 |
+
_prepare_decoder_attention_mask,
|
39 |
)
|
|
|
|
|
40 |
|
41 |
# Text embedding
|
42 |
class TextEmbedding(nn.Module):
|
|
|
86 |
def forward(self, x: float["b n d"], cond: float["b n d"], text_embed: float["b n d"], style_emb, time_emb, drop_audio_cond=False): # noqa: F722
|
87 |
if drop_audio_cond: # cfg for cond audio
|
88 |
cond = torch.zeros_like(cond)
|
|
|
89 |
style_emb = style_emb.unsqueeze(1).repeat(1, x.shape[1], 1)
|
90 |
time_emb = time_emb.unsqueeze(1).repeat(1, x.shape[1], 1)
|
91 |
x = self.proj(torch.cat((x, cond, text_embed, style_emb, time_emb), dim=-1))
|
|
|
93 |
return x
|
94 |
|
95 |
|
96 |
+
# Transformer backbone using Llama blocks
|
|
|
|
|
97 |
class DiT(nn.Module):
|
98 |
def __init__(
|
99 |
self,
|
|
|
109 |
text_dim=None,
|
110 |
conv_layers=0,
|
111 |
long_skip_connection=False,
|
112 |
+
max_frames=2048
|
|
|
113 |
):
|
114 |
super().__init__()
|
115 |
+
|
116 |
+
self.max_frames = max_frames
|
117 |
|
118 |
cond_dim = 512
|
119 |
self.time_embed = TimestepEmbedding(cond_dim)
|
120 |
self.start_time_embed = TimestepEmbedding(cond_dim)
|
121 |
if text_dim is None:
|
122 |
text_dim = mel_dim
|
123 |
+
self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers=conv_layers, max_pos=self.max_frames)
|
124 |
self.input_embed = InputEmbedding(mel_dim, text_dim, dim, cond_dim=cond_dim)
|
125 |
|
|
|
126 |
self.dim = dim
|
127 |
self.depth = depth
|
128 |
|
129 |
+
llama_config = LlamaConfig(hidden_size=dim, intermediate_size=dim * ff_mult, hidden_act='silu', max_position_embeddings=self.max_frames)
|
130 |
llama_config._attn_implementation = 'sdpa'
|
|
|
131 |
self.transformer_blocks = nn.ModuleList(
|
132 |
[LlamaDecoderLayer(llama_config, layer_idx=i) for i in range(depth)]
|
133 |
)
|
|
|
149 |
self.norm_out = AdaLayerNormZero_Final(dim, cond_dim) # final modulation
|
150 |
self.proj_out = nn.Linear(dim, mel_dim)
|
151 |
|
|
|
152 |
def forward_timestep_invariant(self, text, seq_len, drop_text, start_time):
|
153 |
s_t = self.start_time_embed(start_time)
|
154 |
text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
|
|
|
191 |
pos_ids = torch.arange(x.shape[1], device=x.device)
|
192 |
pos_ids = pos_ids.unsqueeze(0).repeat(x.shape[0], 1)
|
193 |
rotary_embed = self.rotary_emb(x, pos_ids)
|
194 |
+
|
195 |
+
attention_mask = torch.ones(
|
196 |
+
(batch, seq_len),
|
197 |
+
dtype=torch.bool,
|
198 |
+
device=x.device,
|
199 |
+
)
|
200 |
+
attention_mask = _prepare_decoder_attention_mask(
|
201 |
+
attention_mask,
|
202 |
+
(batch, seq_len),
|
203 |
+
x,
|
204 |
+
)
|
205 |
|
206 |
for i, block in enumerate(self.transformer_blocks):
|
207 |
+
x, *_ = block(x, attention_mask=attention_mask, position_embeddings=rotary_embed)
|
208 |
if i < self.depth // 2:
|
209 |
+
x = x + self.text_fusion_linears[i](text_embed)
|
210 |
|
211 |
if self.long_skip_connection is not None:
|
212 |
x = self.long_skip_connection(torch.cat((x, residual), dim=-1))
|
diffrhythm/model/modules.py
CHANGED
@@ -609,3 +609,44 @@ class TimestepEmbedding(nn.Module):
|
|
609 |
time_hidden = time_hidden.to(timestep.dtype)
|
610 |
time = self.time_mlp(time_hidden) # b d
|
611 |
return time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
609 |
time_hidden = time_hidden.to(timestep.dtype)
|
610 |
time = self.time_mlp(time_hidden) # b d
|
611 |
return time
|
612 |
+
|
613 |
+
|
614 |
+
# attention mask realated
|
615 |
+
|
616 |
+
|
617 |
+
def _prepare_decoder_attention_mask(attention_mask, input_shape, inputs_embeds):
|
618 |
+
# create noncausal mask
|
619 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
620 |
+
combined_attention_mask = None
|
621 |
+
|
622 |
+
def _expand_mask(
|
623 |
+
mask: torch.Tensor, dtype: torch.dtype, tgt_len: int = None
|
624 |
+
):
|
625 |
+
"""
|
626 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
627 |
+
"""
|
628 |
+
bsz, src_len = mask.size()
|
629 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
630 |
+
|
631 |
+
expanded_mask = (
|
632 |
+
mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
633 |
+
)
|
634 |
+
|
635 |
+
inverted_mask = 1.0 - expanded_mask
|
636 |
+
|
637 |
+
return inverted_mask.masked_fill(
|
638 |
+
inverted_mask.to(torch.bool), torch.finfo(dtype).min
|
639 |
+
)
|
640 |
+
|
641 |
+
if attention_mask is not None:
|
642 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
643 |
+
expanded_attn_mask = _expand_mask(
|
644 |
+
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
645 |
+
).to(inputs_embeds.device)
|
646 |
+
combined_attention_mask = (
|
647 |
+
expanded_attn_mask
|
648 |
+
if combined_attention_mask is None
|
649 |
+
else expanded_attn_mask + combined_attention_mask
|
650 |
+
)
|
651 |
+
|
652 |
+
return combined_attention_mask
|
diffrhythm/model/utils.py
CHANGED
@@ -44,15 +44,15 @@ def lens_to_mask(t: int["b"], length: int | None = None) -> bool["b n"]: # noqa
|
|
44 |
return seq[None, :] < t[:, None]
|
45 |
|
46 |
|
47 |
-
def mask_from_start_end_indices(seq_len: int["b"], start: int["b"], end: int["b"]): # noqa: F722 F821
|
48 |
-
max_seq_len =
|
49 |
seq = torch.arange(max_seq_len, device=start.device).long()
|
50 |
start_mask = seq[None, :] >= start[:, None]
|
51 |
end_mask = seq[None, :] < end[:, None]
|
52 |
return start_mask & end_mask
|
53 |
|
54 |
|
55 |
-
def mask_from_frac_lengths(seq_len: int["b"], frac_lengths: float["b"]): # noqa: F722 F821
|
56 |
lengths = (frac_lengths * seq_len).long()
|
57 |
max_start = seq_len - lengths
|
58 |
|
@@ -60,7 +60,7 @@ def mask_from_frac_lengths(seq_len: int["b"], frac_lengths: float["b"]): # noqa
|
|
60 |
start = (max_start * rand).long().clamp(min=0)
|
61 |
end = start + lengths
|
62 |
|
63 |
-
return mask_from_start_end_indices(seq_len, start, end)
|
64 |
|
65 |
|
66 |
def maybe_masked_mean(t: float["b n d"], mask: bool["b n"] = None) -> float["b d"]: # noqa: F722
|
|
|
44 |
return seq[None, :] < t[:, None]
|
45 |
|
46 |
|
47 |
+
def mask_from_start_end_indices(seq_len: int["b"], start: int["b"], end: int["b"], max_frames): # noqa: F722 F821
|
48 |
+
max_seq_len = max_frames
|
49 |
seq = torch.arange(max_seq_len, device=start.device).long()
|
50 |
start_mask = seq[None, :] >= start[:, None]
|
51 |
end_mask = seq[None, :] < end[:, None]
|
52 |
return start_mask & end_mask
|
53 |
|
54 |
|
55 |
+
def mask_from_frac_lengths(seq_len: int["b"], frac_lengths: float["b"], max_frames): # noqa: F722 F821
|
56 |
lengths = (frac_lengths * seq_len).long()
|
57 |
max_start = seq_len - lengths
|
58 |
|
|
|
60 |
start = (max_start * rand).long().clamp(min=0)
|
61 |
end = start + lengths
|
62 |
|
63 |
+
return mask_from_start_end_indices(seq_len, start, end, max_frames)
|
64 |
|
65 |
|
66 |
def maybe_masked_mean(t: float["b n d"], mask: bool["b n"] = None) -> float["b d"]: # noqa: F722
|
pretrained/eval.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from einops import rearrange
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
|
7 |
+
class Generator(nn.Module):
|
8 |
+
|
9 |
+
def __init__(self,
|
10 |
+
in_features,
|
11 |
+
ffd_hidden_size,
|
12 |
+
num_classes,
|
13 |
+
attn_layer_num,
|
14 |
+
|
15 |
+
):
|
16 |
+
super(Generator, self).__init__()
|
17 |
+
|
18 |
+
self.attn = nn.ModuleList(
|
19 |
+
[
|
20 |
+
nn.MultiheadAttention(
|
21 |
+
embed_dim=in_features,
|
22 |
+
num_heads=8,
|
23 |
+
dropout=0.2,
|
24 |
+
batch_first=True,
|
25 |
+
)
|
26 |
+
for _ in range(attn_layer_num)
|
27 |
+
]
|
28 |
+
)
|
29 |
+
|
30 |
+
self.ffd = nn.Sequential(
|
31 |
+
nn.Linear(in_features, ffd_hidden_size),
|
32 |
+
nn.ReLU(),
|
33 |
+
nn.Linear(ffd_hidden_size, in_features)
|
34 |
+
)
|
35 |
+
|
36 |
+
self.dropout = nn.Dropout(0.2)
|
37 |
+
|
38 |
+
self.fc = nn.Linear(in_features * 2, num_classes)
|
39 |
+
|
40 |
+
self.proj = nn.Tanh()
|
41 |
+
|
42 |
+
|
43 |
+
def forward(self, ssl_feature, judge_id=None):
|
44 |
+
'''
|
45 |
+
ssl_feature: [B, T, D]
|
46 |
+
output: [B, num_classes]
|
47 |
+
'''
|
48 |
+
|
49 |
+
B, T, D = ssl_feature.shape
|
50 |
+
|
51 |
+
ssl_feature = self.ffd(ssl_feature)
|
52 |
+
|
53 |
+
tmp_ssl_feature = ssl_feature
|
54 |
+
|
55 |
+
for attn in self.attn:
|
56 |
+
tmp_ssl_feature, _ = attn(tmp_ssl_feature, tmp_ssl_feature, tmp_ssl_feature)
|
57 |
+
|
58 |
+
ssl_feature = self.dropout(torch.concat([torch.mean(tmp_ssl_feature, dim=1), torch.max(ssl_feature, dim=1)[0]], dim=1)) # B, 2D
|
59 |
+
|
60 |
+
x = self.fc(ssl_feature) # B, num_classes
|
61 |
+
|
62 |
+
x = self.proj(x) * 2.0 + 3
|
63 |
+
|
64 |
+
return x
|
65 |
+
|
66 |
+
|
pretrained/eval.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81cbd54af8b103251e425fcbd8f5313975cb742e760c3dae1e10f99969933fd6
|
3 |
+
size 100792276
|
pretrained/eval.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
generator:
|
2 |
+
_target_: pretrained.eval.Generator
|
3 |
+
in_features: 1024
|
4 |
+
ffd_hidden_size: 4096
|
5 |
+
num_classes: 5
|
6 |
+
attn_layer_num: 4
|