Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
import torch | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import random as r | |
import gradio as gr | |
import asyncio | |
tokenizer = AutoTokenizer.from_pretrained("APJ23/MultiHeaded_Sentiment_Analysis_Model", local_files_only=True) | |
model = AutoModelForSequenceClassification.from_pretrained("APJ23/MultiHeaded_Sentiment_Analysis_Model") | |
classes = { | |
0: 'Non-Toxic', | |
1: 'Toxic', | |
2: 'Severely Toxic', | |
3: 'Obscene', | |
4: 'Threat', | |
5: 'Insult', | |
6: 'Identity Hate' | |
} | |
def prediction(tweet,model,tokenizer): | |
inputs = tokenizer(tweet, return_tensors="pt", padding=True, truncation=True) | |
outputs = model(**inputs) | |
predicted_class = torch.argmax(outputs.logits, dim=1) | |
predicted_prob = torch.softmax(outputs.logits, dim=1)[0][predicted_class].item() | |
return classes[predicted_class], predicted_prob | |
def create_table(predictions): | |
data = {'Tweet': [], 'Highest Toxicity Class': [], 'Probability': []} | |
for tweet, prediction in predictions.items(): | |
data['Tweet'].append(tweet) | |
data['Highest Toxicity Class'].append(prediction[0]) | |
data['Probability'].append(prediction[1]) | |
df = pd.DataFrame(data) | |
return df | |
st.title('Toxicity Prediction App') | |
tweet=st.text_input('Enter a tweet to check for toxicity') | |
async def run_async_function(tweet, model, tokenizer): | |
loop = asyncio.new_event_loop() | |
asyncio.set_event_loop(loop) | |
result = await loop.run_in_executor(None, prediction, tweet, model, tokenizer) | |
loop.close() | |
return result | |
if st.button('Predict'): | |
predicted_class_label, predicted_prob = asyncio.run(run_async_function(tweet, model, tokenizer)) | |
prediction_text = f'Prediction: {predicted_class_label} ({predicted_prob:.2f})' | |
st.write(prediction_text) | |
predictions = {tweet: (predicted_class_label, predicted_prob)} | |
table = create_table(predictions) | |
st.table(table) | |