from fastai.vision.all import * | |
import gradio as gr | |
# Cargamos el learner | |
learn = load_learner('export.pkl') | |
# Definimos las etiquetas de nuestro modelo | |
labels = learn.dls.vocab | |
# Definimos una función que se encarga de llevar a cabo las predicciones | |
def predict(img): | |
img = PILImage.create(img) | |
pred,pred_idx,probs = learn.predict(img) | |
return {labels[i]: float(probs[i]) for i in range(len(labels))} | |
# Creamos la interfaz y la lanzamos. | |
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Label(num_top_classes=3),examples=['buildings.jpg','forest.jpg']).launch(share=False) | |