Spaces:
Running
Running
import os | |
import glob | |
import sys | |
import cv2 | |
import argparse | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torchvision import transforms | |
from PIL import Image | |
import rembg | |
class BLIP2(): | |
def __init__(self, device='cuda'): | |
self.device = device | |
from transformers import AutoProcessor, Blip2ForConditionalGeneration | |
self.processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b") | |
self.model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16).to(device) | |
def __call__(self, image): | |
image = Image.fromarray(image) | |
inputs = self.processor(image, return_tensors="pt").to(self.device, torch.float16) | |
generated_ids = self.model.generate(**inputs, max_new_tokens=20) | |
generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() | |
return generated_text | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('path', type=str, help="path to image (png, jpeg, etc.)") | |
parser.add_argument('--model', default='u2net', type=str, help="rembg model, see https://github.com/danielgatis/rembg#models") | |
parser.add_argument('--size', default=256, type=int, help="output resolution") | |
parser.add_argument('--border_ratio', default=0.2, type=float, help="output border ratio") | |
parser.add_argument('--recenter', type=bool, default=True, help="recenter, potentially not helpful for multiview zero123") | |
opt = parser.parse_args() | |
session = rembg.new_session(model_name=opt.model) | |
if os.path.isdir(opt.path): | |
print(f'[INFO] processing directory {opt.path}...') | |
files = glob.glob(f'{opt.path}/*') | |
out_dir = opt.path | |
else: # isfile | |
files = [opt.path] | |
out_dir = os.path.dirname(opt.path) | |
for file in files: | |
out_base = os.path.basename(file).split('.')[0] | |
out_rgba = os.path.join(out_dir, out_base + '_rgba.png') | |
# load image | |
print(f'[INFO] loading image {file}...') | |
image = cv2.imread(file, cv2.IMREAD_UNCHANGED) | |
# carve background | |
print(f'[INFO] background removal...') | |
carved_image = rembg.remove(image, session=session) # [H, W, 4] | |
mask = carved_image[..., -1] > 0 | |
# recenter | |
if opt.recenter: | |
print(f'[INFO] recenter...') | |
final_rgba = np.zeros((opt.size, opt.size, 4), dtype=np.uint8) | |
coords = np.nonzero(mask) | |
x_min, x_max = coords[0].min(), coords[0].max() | |
y_min, y_max = coords[1].min(), coords[1].max() | |
h = x_max - x_min | |
w = y_max - y_min | |
desired_size = int(opt.size * (1 - opt.border_ratio)) | |
scale = desired_size / max(h, w) | |
h2 = int(h * scale) | |
w2 = int(w * scale) | |
x2_min = (opt.size - h2) // 2 | |
x2_max = x2_min + h2 | |
y2_min = (opt.size - w2) // 2 | |
y2_max = y2_min + w2 | |
final_rgba[x2_min:x2_max, y2_min:y2_max] = cv2.resize(carved_image[x_min:x_max, y_min:y_max], (w2, h2), interpolation=cv2.INTER_AREA) | |
else: | |
final_rgba = carved_image | |
# write image | |
cv2.imwrite(out_rgba, final_rgba) |