Spaces:
Runtime error
Runtime error
from diffusers import StableDiffusionXLPipeline, AutoencoderKL | |
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
import torch | |
from PIL import Image, ImageOps | |
import gradio as gr | |
import user_history | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
vae=vae, | |
torch_dtype=torch.float16, | |
variant="fp16", | |
use_safetensors=True, | |
) | |
pipe.to("cuda") | |
pipe.unet.to(memory_format=torch.channels_last) | |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
def call( | |
pipe, | |
prompt: Union[str, List[str]] = None, | |
prompt2: Union[str, List[str]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
denoising_end: Optional[float] = None, | |
guidance_scale: float = 5.0, | |
guidance_scale2: float = 5.0, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
negative_prompt2: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
guidance_rescale: float = 0.0, | |
original_size: Optional[Tuple[int, int]] = None, | |
crops_coords_top_left: Tuple[int, int] = (0, 0), | |
target_size: Optional[Tuple[int, int]] = None, | |
negative_original_size: Optional[Tuple[int, int]] = None, | |
negative_crops_coords_top_left: Tuple[int, int] = (0, 0), | |
negative_target_size: Optional[Tuple[int, int]] = None, | |
): | |
# 0. Default height and width to unet | |
height = height or pipe.default_sample_size * pipe.vae_scale_factor | |
width = width or pipe.default_sample_size * pipe.vae_scale_factor | |
original_size = original_size or (height, width) | |
target_size = target_size or (height, width) | |
# 1. Check inputs. Raise error if not correct | |
pipe.check_inputs( | |
prompt, | |
None, | |
height, | |
width, | |
callback_steps, | |
negative_prompt, | |
None, | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = pipe._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
text_encoder_lora_scale = ( | |
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | |
) | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = pipe.encode_prompt( | |
prompt=prompt, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
pooled_prompt_embeds=None, | |
negative_pooled_prompt_embeds=None, | |
lora_scale=text_encoder_lora_scale, | |
) | |
( | |
prompt2_embeds, | |
negative_prompt2_embeds, | |
pooled_prompt2_embeds, | |
negative_pooled_prompt2_embeds, | |
) = pipe.encode_prompt( | |
prompt=prompt2, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
negative_prompt=negative_prompt2, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
pooled_prompt_embeds=None, | |
negative_pooled_prompt_embeds=None, | |
lora_scale=text_encoder_lora_scale, | |
) | |
# 4. Prepare timesteps | |
pipe.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = pipe.scheduler.timesteps | |
# 5. Prepare latent variables | |
num_channels_latents = pipe.unet.config.in_channels | |
latents = pipe.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = pipe.prepare_extra_step_kwargs(generator, eta) | |
# 7. Prepare added time ids & embeddings | |
add_text_embeds = pooled_prompt_embeds | |
add_text2_embeds = pooled_prompt2_embeds | |
add_time_ids = pipe._get_add_time_ids( | |
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype | |
) | |
add_time2_ids = pipe._get_add_time_ids( | |
original_size, crops_coords_top_left, target_size, dtype=prompt2_embeds.dtype | |
) | |
if negative_original_size is not None and negative_target_size is not None: | |
negative_add_time_ids = pipe._get_add_time_ids( | |
negative_original_size, | |
negative_crops_coords_top_left, | |
negative_target_size, | |
dtype=prompt_embeds.dtype, | |
) | |
else: | |
negative_add_time_ids = add_time_ids | |
negative_add_time2_ids = add_time2_ids | |
if do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) | |
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) | |
prompt2_embeds = torch.cat([negative_prompt2_embeds, prompt2_embeds], dim=0) | |
add_text2_embeds = torch.cat([negative_pooled_prompt2_embeds, add_text2_embeds], dim=0) | |
add_time2_ids = torch.cat([negative_add_time2_ids, add_time2_ids], dim=0) | |
prompt_embeds = prompt_embeds.to(device) | |
add_text_embeds = add_text_embeds.to(device) | |
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) | |
prompt2_embeds = prompt2_embeds.to(device) | |
add_text2_embeds = add_text2_embeds.to(device) | |
add_time2_ids = add_time2_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) | |
# 8. Denoising loop | |
num_warmup_steps = max(len(timesteps) - num_inference_steps * pipe.scheduler.order, 0) | |
# 7.1 Apply denoising_end | |
if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1: | |
discrete_timestep_cutoff = int( | |
round( | |
pipe.scheduler.config.num_train_timesteps | |
- (denoising_end * pipe.scheduler.config.num_train_timesteps) | |
) | |
) | |
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) | |
timesteps = timesteps[:num_inference_steps] | |
with pipe.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if i % 2 == 0: | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = pipe.scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} | |
noise_pred = pipe.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
else: | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input2 = torch.cat([latents.flip(2)] * 2) if do_classifier_free_guidance else latents | |
latent_model_input2 = pipe.scheduler.scale_model_input(latent_model_input2, t) | |
# predict the noise residual | |
added_cond2_kwargs = {"text_embeds": add_text2_embeds, "time_ids": add_time2_ids} | |
noise_pred2 = pipe.unet( | |
latent_model_input2, | |
t, | |
encoder_hidden_states=prompt2_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
added_cond_kwargs=added_cond2_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred2_uncond, noise_pred2_text = noise_pred2.chunk(2) | |
noise_pred2 = noise_pred2_uncond + guidance_scale2 * (noise_pred2_text - noise_pred2_uncond) | |
noise_pred = noise_pred if i % 2 == 0 else noise_pred2.flip(2) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = pipe.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipe.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, latents) | |
if not output_type == "latent": | |
# make sure the VAE is in float32 mode, as it overflows in float16 | |
needs_upcasting = pipe.vae.dtype == torch.float16 and pipe.vae.config.force_upcast | |
if needs_upcasting: | |
pipe.upcast_vae() | |
latents = latents.to(next(iter(pipe.vae.post_quant_conv.parameters())).dtype) | |
image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0] | |
# cast back to fp16 if needed | |
if needs_upcasting: | |
pipe.vae.to(dtype=torch.float16) | |
else: | |
image = latents | |
if not output_type == "latent": | |
# apply watermark if available | |
if pipe.watermark is not None: | |
image = pipe.watermark.apply_watermark(image) | |
image = pipe.image_processor.postprocess(image, output_type=output_type) | |
# Offload all models | |
pipe.maybe_free_model_hooks() | |
if not return_dict: | |
return (image,) | |
return StableDiffusionXLPipelineOutput(images=image) | |
NEGATIVE_PROMPTS = "text, watermark, low-quality, signature, moiré pattern, downsampling, aliasing, distorted, blurry, glossy, blur, jpeg artifacts, compression artifacts, poorly drawn, low-resolution, bad, distortion, twisted, excessive, exaggerated pose, exaggerated limbs, grainy, symmetrical, duplicate, error, pattern, beginner, pixelated, fake, hyper, glitch, overexposed, high-contrast, bad-contrast" | |
def rotate_output(has_flipped): | |
if(has_flipped): | |
return gr.Image(elem_classes="not_rotated"), gr.Button("Rotate to see prompt 2!"), not has_flipped | |
else: | |
return gr.Image(elem_classes="rotated"), gr.Button("Rotate to see prompt 1!"), not has_flipped | |
def simple_call(prompt1, prompt2, profile: gr.OAuthProfile | None=None): | |
generator = [torch.Generator(device="cuda").manual_seed(5)] | |
res = call( | |
pipe, | |
prompt1, | |
prompt2, | |
width=768, | |
height=768, | |
num_images_per_prompt=1, | |
num_inference_steps=50, | |
guidance_scale=5.0, | |
guidance_scale2=8.0, | |
negative_prompt=NEGATIVE_PROMPTS, | |
negative_prompt2=NEGATIVE_PROMPTS, | |
generator=generator | |
) | |
image1 = res.images[0] | |
# save generated images (if logged in) | |
user_history.save_image(label=f"{prompt1} / {prompt2}", image=image1, profile=profile, metadata={ | |
"prompt2": prompt1, | |
"prompt1": prompt2, | |
}) | |
return image1 | |
css = ''' | |
#result_image{ transition: transform 2s ease-in-out } | |
#result_image.rotated{transform: rotate(180deg)} | |
''' | |
with gr.Blocks() as app: | |
gr.Markdown( | |
''' | |
<center> | |
<h1>Upside Down Diffusion</h1> | |
<p>Code by Alex Carlier, <a href="https://colab.research.google.com/drive/1rjDQOn11cTHAf3Oeq87Hfl_Vh41NbTl4?usp=sharing">Google Colab</a>, follow them on <a href="https://twitter.com/alexcarliera">Twitter</a></p> | |
<p>A space by <a href="https://twitter.com/angrypenguinPNG">AP</a> with contributions from <a href="https://twitter.com/multimodalart">MultimodalArt</a></p> | |
</center> | |
<hr> | |
<p> | |
Enter your first prompt to craft an image that will show when upright. Then, add a second prompt to reveal a mesmerizing surprise when you flip the image upside down! ✨ | |
</p> | |
<p> | |
<em>For best results, please include the prompt in the following format: Art Style and Object. Here is an example: Prompt 1: A sketch of a turtle, Prompt 2: A sketch of a tree. Both prompts need to have the same style!</em> | |
</p> | |
''' | |
) | |
has_flipped = gr.State(value=False) | |
with gr.Row(): | |
with gr.Column(): | |
prompt1 = gr.Textbox(label="Prompt 1", info="Prompt for the side up", placeholder="A sketch of a...") | |
prompt2 = gr.Textbox(label="Prompt 2", info="Prompt for the side down", placeholder="A sketch of a...") | |
run_btn = gr.Button("Run") | |
with gr.Column(): | |
result_image1 = gr.Image(label="Output", elem_id="result_image", elem_classes="not_rotated") | |
rotate_button = gr.Button("Rotate to see prompt 2!") | |
run_btn.click( | |
simple_call, | |
inputs=[prompt1, prompt2], | |
outputs=[result_image1] | |
) | |
rotate_button.click( | |
rotate_output, | |
inputs=[has_flipped], | |
outputs=[result_image1, rotate_button, has_flipped], | |
queue=False, | |
show_progress=False | |
) | |
with gr.Blocks(css=css) as app_with_history: | |
with gr.Tab("Upside Down Diffusion"): | |
app.render() | |
with gr.Tab("Past generations"): | |
user_history.render() | |
app_with_history.queue(max_size=20) | |
if __name__ == "__main__": | |
app_with_history.launch(debug=True) |