Spaces:
Runtime error
Runtime error
Delete safety_checker.py
Browse files- safety_checker.py +0 -137
safety_checker.py
DELETED
|
@@ -1,137 +0,0 @@
|
|
| 1 |
-
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
| 2 |
-
#
|
| 3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
-
# you may not use this file except in compliance with the License.
|
| 5 |
-
# You may obtain a copy of the License at
|
| 6 |
-
#
|
| 7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
-
#
|
| 9 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
-
# See the License for the specific language governing permissions and
|
| 13 |
-
# limitations under the License.
|
| 14 |
-
|
| 15 |
-
import numpy as np
|
| 16 |
-
import torch
|
| 17 |
-
import torch.nn as nn
|
| 18 |
-
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
def cosine_distance(image_embeds, text_embeds):
|
| 22 |
-
normalized_image_embeds = nn.functional.normalize(image_embeds)
|
| 23 |
-
normalized_text_embeds = nn.functional.normalize(text_embeds)
|
| 24 |
-
return torch.mm(normalized_image_embeds, normalized_text_embeds.t())
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
class StableDiffusionSafetyChecker(PreTrainedModel):
|
| 28 |
-
config_class = CLIPConfig
|
| 29 |
-
|
| 30 |
-
_no_split_modules = ["CLIPEncoderLayer"]
|
| 31 |
-
|
| 32 |
-
def __init__(self, config: CLIPConfig):
|
| 33 |
-
super().__init__(config)
|
| 34 |
-
|
| 35 |
-
self.vision_model = CLIPVisionModel(config.vision_config)
|
| 36 |
-
self.visual_projection = nn.Linear(
|
| 37 |
-
config.vision_config.hidden_size, config.projection_dim, bias=False
|
| 38 |
-
)
|
| 39 |
-
|
| 40 |
-
self.concept_embeds = nn.Parameter(
|
| 41 |
-
torch.ones(17, config.projection_dim), requires_grad=False
|
| 42 |
-
)
|
| 43 |
-
self.special_care_embeds = nn.Parameter(
|
| 44 |
-
torch.ones(3, config.projection_dim), requires_grad=False
|
| 45 |
-
)
|
| 46 |
-
|
| 47 |
-
self.concept_embeds_weights = nn.Parameter(torch.ones(17), requires_grad=False)
|
| 48 |
-
self.special_care_embeds_weights = nn.Parameter(
|
| 49 |
-
torch.ones(3), requires_grad=False
|
| 50 |
-
)
|
| 51 |
-
|
| 52 |
-
@torch.no_grad()
|
| 53 |
-
def forward(self, clip_input, images):
|
| 54 |
-
pooled_output = self.vision_model(clip_input)[1] # pooled_output
|
| 55 |
-
image_embeds = self.visual_projection(pooled_output)
|
| 56 |
-
|
| 57 |
-
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
| 58 |
-
special_cos_dist = (
|
| 59 |
-
cosine_distance(image_embeds, self.special_care_embeds)
|
| 60 |
-
.cpu()
|
| 61 |
-
.float()
|
| 62 |
-
.numpy()
|
| 63 |
-
)
|
| 64 |
-
cos_dist = (
|
| 65 |
-
cosine_distance(image_embeds, self.concept_embeds).cpu().float().numpy()
|
| 66 |
-
)
|
| 67 |
-
|
| 68 |
-
result = []
|
| 69 |
-
batch_size = image_embeds.shape[0]
|
| 70 |
-
for i in range(batch_size):
|
| 71 |
-
result_img = {
|
| 72 |
-
"special_scores": {},
|
| 73 |
-
"special_care": [],
|
| 74 |
-
"concept_scores": {},
|
| 75 |
-
"bad_concepts": [],
|
| 76 |
-
}
|
| 77 |
-
|
| 78 |
-
# increase this value to create a stronger `nfsw` filter
|
| 79 |
-
# at the cost of increasing the possibility of filtering benign images
|
| 80 |
-
adjustment = 0.0
|
| 81 |
-
|
| 82 |
-
for concept_idx in range(len(special_cos_dist[0])):
|
| 83 |
-
concept_cos = special_cos_dist[i][concept_idx]
|
| 84 |
-
concept_threshold = self.special_care_embeds_weights[concept_idx].item()
|
| 85 |
-
result_img["special_scores"][concept_idx] = round(
|
| 86 |
-
concept_cos - concept_threshold + adjustment, 3
|
| 87 |
-
)
|
| 88 |
-
if result_img["special_scores"][concept_idx] > 0:
|
| 89 |
-
result_img["special_care"].append(
|
| 90 |
-
{concept_idx, result_img["special_scores"][concept_idx]}
|
| 91 |
-
)
|
| 92 |
-
adjustment = 0.01
|
| 93 |
-
|
| 94 |
-
for concept_idx in range(len(cos_dist[0])):
|
| 95 |
-
concept_cos = cos_dist[i][concept_idx]
|
| 96 |
-
concept_threshold = self.concept_embeds_weights[concept_idx].item()
|
| 97 |
-
result_img["concept_scores"][concept_idx] = round(
|
| 98 |
-
concept_cos - concept_threshold + adjustment, 3
|
| 99 |
-
)
|
| 100 |
-
if result_img["concept_scores"][concept_idx] > 0:
|
| 101 |
-
result_img["bad_concepts"].append(concept_idx)
|
| 102 |
-
|
| 103 |
-
result.append(result_img)
|
| 104 |
-
|
| 105 |
-
has_nsfw_concepts = [len(res["bad_concepts"]) > 0 for res in result]
|
| 106 |
-
|
| 107 |
-
return has_nsfw_concepts
|
| 108 |
-
|
| 109 |
-
@torch.no_grad()
|
| 110 |
-
def forward_onnx(self, clip_input: torch.FloatTensor, images: torch.FloatTensor):
|
| 111 |
-
pooled_output = self.vision_model(clip_input)[1] # pooled_output
|
| 112 |
-
image_embeds = self.visual_projection(pooled_output)
|
| 113 |
-
|
| 114 |
-
special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds)
|
| 115 |
-
cos_dist = cosine_distance(image_embeds, self.concept_embeds)
|
| 116 |
-
|
| 117 |
-
# increase this value to create a stronger `nsfw` filter
|
| 118 |
-
# at the cost of increasing the possibility of filtering benign images
|
| 119 |
-
adjustment = 0.0
|
| 120 |
-
|
| 121 |
-
special_scores = (
|
| 122 |
-
special_cos_dist - self.special_care_embeds_weights + adjustment
|
| 123 |
-
)
|
| 124 |
-
# special_scores = special_scores.round(decimals=3)
|
| 125 |
-
special_care = torch.any(special_scores > 0, dim=1)
|
| 126 |
-
special_adjustment = special_care * 0.01
|
| 127 |
-
special_adjustment = special_adjustment.unsqueeze(1).expand(
|
| 128 |
-
-1, cos_dist.shape[1]
|
| 129 |
-
)
|
| 130 |
-
|
| 131 |
-
concept_scores = (cos_dist - self.concept_embeds_weights) + special_adjustment
|
| 132 |
-
# concept_scores = concept_scores.round(decimals=3)
|
| 133 |
-
has_nsfw_concepts = torch.any(concept_scores > 0, dim=1)
|
| 134 |
-
|
| 135 |
-
images[has_nsfw_concepts] = 0.0 # black image
|
| 136 |
-
|
| 137 |
-
return images, has_nsfw_concepts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|