ImageCaptionner / training /efficient_train.py
AOUNZakaria's picture
Deploy image captioner
32d4a86
import argparse
import os
import random
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader, random_split
from torchvision import transforms
from timm import create_model
from transformers import AutoTokenizer
from pycocotools.coco import COCO
from datetime import datetime
from PIL import Image
# Distributed training imports
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
# ------------------- DDP Setup Functions ------------------- #
def setup_distributed():
dist.init_process_group(backend='nccl')
def cleanup_distributed():
dist.destroy_process_group()
# ------------------- Configuration and Constants ------------------- #
DEFAULT_MAX_SEQ_LENGTH = 64
DEFAULT_EMBED_DIM = 512
DEFAULT_NUM_LAYERS = 8
DEFAULT_NUM_HEADS = 8
# ------------------- Data Preparation ------------------- #
class CocoCaptionDataset(Dataset):
"""Custom COCO dataset that returns image-caption pairs with processing"""
def __init__(self, root, ann_file, transform=None, max_seq_length=DEFAULT_MAX_SEQ_LENGTH):
self.coco = COCO(ann_file)
self.root = root
self.transform = transform
self.max_seq_length = max_seq_length
self.ids = list(self.coco.imgs.keys())
# Initialize tokenizer with special tokens
self.tokenizer = AutoTokenizer.from_pretrained('gpt2')
self.tokenizer.pad_token = self.tokenizer.eos_token
special_tokens = {'additional_special_tokens': ['<start>', '<end>']}
self.tokenizer.add_special_tokens(special_tokens)
self.vocab_size = len(self.tokenizer)
def __len__(self):
return len(self.ids)
def __getitem__(self, idx):
img_id = self.ids[idx]
img_info = self.coco.loadImgs(img_id)[0]
img_path = os.path.join(self.root, img_info['file_name'])
img = Image.open(img_path).convert('RGB')
# Get random caption from available annotations
ann_ids = self.coco.getAnnIds(imgIds=img_id)
anns = self.coco.loadAnns(ann_ids)
caption = random.choice(anns)['caption']
# Apply transforms
if self.transform:
img = self.transform(img)
# Tokenize caption with special tokens
caption = f"<start> {caption} <end>"
inputs = self.tokenizer(
caption,
padding='max_length',
max_length=self.max_seq_length,
truncation=True,
return_tensors='pt',
)
return img, inputs.input_ids.squeeze(0)
class CocoTestDataset(Dataset):
"""COCO test dataset that loads images only (no annotations available)"""
def __init__(self, root, transform=None):
self.root = root
self.transform = transform
# Assumes all files in the directory are images
self.img_files = sorted(os.listdir(root))
def __len__(self):
return len(self.img_files)
def __getitem__(self, idx):
img_file = self.img_files[idx]
img_path = os.path.join(self.root, img_file)
img = Image.open(img_path).convert('RGB')
if self.transform:
img = self.transform(img)
return img, img_file # Return the filename for reference
# ------------------- Model Architecture ------------------- #
class Encoder(nn.Module):
"""CNN encoder using timm models"""
def __init__(self, model_name='efficientnet_b3', embed_dim=DEFAULT_EMBED_DIM):
super().__init__()
self.backbone = create_model(
model_name,
pretrained=True,
num_classes=0,
global_pool='',
features_only=False
)
# Get output channels from backbone
with torch.no_grad():
dummy = torch.randn(1, 3, 224, 224)
features = self.backbone(dummy)
in_features = features.shape[1]
self.projection = nn.Linear(in_features, embed_dim)
def forward(self, x):
features = self.backbone(x) # (batch, channels, height, width)
batch_size, channels, height, width = features.shape
features = features.permute(0, 2, 3, 1).reshape(batch_size, -1, channels)
return self.projection(features)
class Decoder(nn.Module):
"""Transformer decoder with positional embeddings and causal masking"""
def __init__(self, vocab_size, embed_dim, num_layers, num_heads, max_seq_length, dropout=0.1):
super().__init__()
self.embedding = nn.Embedding(vocab_size, embed_dim)
self.positional_encoding = nn.Embedding(max_seq_length, embed_dim)
self.dropout = nn.Dropout(dropout)
decoder_layer = nn.TransformerDecoderLayer(
d_model=embed_dim,
nhead=num_heads,
dropout=dropout,
batch_first=False
)
self.layers = nn.TransformerDecoder(decoder_layer, num_layers)
self.fc = nn.Linear(embed_dim, vocab_size)
self.max_seq_length = max_seq_length
# Register causal mask buffer
self.register_buffer(
"causal_mask",
torch.triu(torch.full((max_seq_length, max_seq_length), float('-inf')), diagonal=1)
)
def forward(self, x, memory, tgt_mask=None):
seq_length = x.size(1)
positions = torch.arange(0, seq_length, device=x.device).unsqueeze(0)
x_emb = self.embedding(x) + self.positional_encoding(positions)
x_emb = self.dropout(x_emb)
# Reshape for transformer: (seq, batch, features)
x_emb = x_emb.permute(1, 0, 2)
memory = memory.permute(1, 0, 2)
# Apply causal mask
mask = self.causal_mask[:seq_length, :seq_length]
output = self.layers(
x_emb,
memory,
tgt_mask=mask
)
return self.fc(output.permute(1, 0, 2))
class ImageCaptioningModel(nn.Module):
"""Complete image captioning model"""
def __init__(self, encoder, decoder):
super().__init__()
self.encoder = encoder
self.decoder = decoder
def forward(self, images, captions, tgt_mask=None):
memory = self.encoder(images)
return self.decoder(captions, memory)
# ------------------- Inference Utility ------------------- #
def generate_caption(model, image, tokenizer, device, max_length=DEFAULT_MAX_SEQ_LENGTH):
"""
Generate a caption for a single image using greedy decoding.
Assumes the tokenizer has '<start>' and '<end>' as special tokens.
"""
model.eval()
with torch.no_grad():
image = image.unsqueeze(0) # shape: (1, 3, H, W)
if isinstance(model, DDP):
memory = model.module.encoder(image)
else:
memory = model.encoder(image)
start_token = tokenizer.convert_tokens_to_ids("<start>")
end_token = tokenizer.convert_tokens_to_ids("<end>")
caption_ids = [start_token]
for _ in range(max_length - 1):
decoder_input = torch.tensor(caption_ids, device=device).unsqueeze(0)
if isinstance(model, DDP):
output = model.module.decoder(decoder_input, memory)
else:
output = model.decoder(decoder_input, memory)
next_token_logits = output[0, -1, :]
next_token = next_token_logits.argmax().item()
caption_ids.append(next_token)
if next_token == end_token:
break
caption_text = tokenizer.decode(caption_ids, skip_special_tokens=True)
return caption_text
# ------------------- Training Utilities ------------------- #
def create_dataloaders(args):
"""Create train/val/test dataloaders with appropriate transforms"""
train_transform = transforms.Compose([
transforms.Resize(256),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
eval_transform = transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# Load datasets
train_set = CocoCaptionDataset(
root=args.train_image_dir,
ann_file=args.train_ann_file,
transform=train_transform
)
val_set = CocoCaptionDataset(
root=args.val_image_dir,
ann_file=args.val_ann_file,
transform=eval_transform
)
test_set = CocoTestDataset(
root=args.test_image_dir,
transform=eval_transform
)
# For distributed training, use DistributedSampler
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_set)
else:
train_sampler = None
# Optimize for GPU: use pin_memory and more workers if CUDA is available
pin_memory = torch.cuda.is_available()
num_workers = 8 if torch.cuda.is_available() else 4 # More workers for GPU
persistent_workers = torch.cuda.is_available() # Keep workers alive between epochs
train_loader = DataLoader(
train_set,
batch_size=args.batch_size,
shuffle=(train_sampler is None),
sampler=train_sampler,
num_workers=num_workers,
pin_memory=pin_memory,
persistent_workers=persistent_workers,
prefetch_factor=2 if num_workers > 0 else None # Prefetch batches
)
val_loader = DataLoader(
val_set,
batch_size=args.batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=pin_memory,
persistent_workers=persistent_workers
)
test_loader = DataLoader(
test_set,
batch_size=1, # For inference, process one image at a time
shuffle=False,
num_workers=num_workers
)
return train_loader, val_loader, test_loader, train_set.tokenizer, train_set
def train_epoch(model, loader, optimizer, criterion, scaler, scheduler, device, args):
model.train()
total_loss = 0.0
if args.distributed:
loader.sampler.set_epoch(args.epoch)
for batch_idx, (images, captions) in enumerate(loader):
images = images.to(device)
captions = captions.to(device)
# Teacher forcing: use shifted captions as decoder input
decoder_input = captions[:, :-1]
targets = captions[:, 1:].contiguous()
optimizer.zero_grad()
# Use new API for PyTorch 2.6+
if hasattr(torch.amp, 'autocast'):
autocast_context = torch.amp.autocast('cuda', enabled=args.use_amp)
else:
autocast_context = torch.cuda.amp.autocast(enabled=args.use_amp)
with autocast_context:
logits = model(images, decoder_input)
loss = criterion(
logits.view(-1, logits.size(-1)),
targets.view(-1)
)
scaler.scale(loss).backward()
if (batch_idx + 1) % args.grad_accum == 0:
scaler.step(optimizer)
scaler.update()
# Only step scheduler if it's provided and supports per-step updates
if scheduler is not None:
scheduler.step() # Update learning rate
optimizer.zero_grad()
total_loss += loss.item()
return total_loss / len(loader)
def validate(model, loader, criterion, device):
model.eval()
total_loss = 0.0
with torch.no_grad():
for images, captions in loader:
images = images.to(device)
captions = captions.to(device)
decoder_input = captions[:, :-1]
targets = captions[:, 1:].contiguous()
logits = model(images, decoder_input)
loss = criterion(
logits.view(-1, logits.size(-1)),
targets.view(-1)
)
total_loss += loss.item()
return total_loss / len(loader)
def main(args):
if args.distributed:
setup_distributed()
device = torch.device("cuda", args.local_rank) if args.distributed else torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
# Create dataloaders and obtain tokenizer and training dataset (for sampler)
train_loader, val_loader, test_loader, tokenizer, train_set = create_dataloaders(args)
# Initialize model
encoder = Encoder(args.model_name, args.embed_dim)
decoder = Decoder(
vocab_size=tokenizer.vocab_size + 2,
embed_dim=args.embed_dim,
num_layers=args.num_layers,
num_heads=args.num_heads,
max_seq_length=DEFAULT_MAX_SEQ_LENGTH,
dropout=0.1
)
model = ImageCaptioningModel(encoder, decoder).to(device)
if args.distributed:
model = DDP(model, device_ids=[args.local_rank])
# Set up training components
optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=0.01)
criterion = nn.CrossEntropyLoss(ignore_index=tokenizer.pad_token_id)
# Use new API for PyTorch 2.6+
if hasattr(torch.amp, 'GradScaler'):
scaler = torch.amp.GradScaler('cuda', enabled=args.use_amp)
else:
scaler = torch.cuda.amp.GradScaler(enabled=args.use_amp)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer,
T_max=args.epochs * len(train_loader),
eta_min=1e-6
)
best_val_loss = float('inf')
patience_counter = 0
# Support resume training
start_epoch = 0
if args.resume_checkpoint:
# Handle PyTorch 2.6+ security: allow tokenizer classes
try:
from transformers.models.gpt2.tokenization_gpt2_fast import GPT2TokenizerFast
torch.serialization.add_safe_globals([GPT2TokenizerFast])
except ImportError:
pass
# Load checkpoint (weights_only=False for backward compatibility with tokenizer)
checkpoint = torch.load(args.resume_checkpoint, map_location=device, weights_only=False)
if args.distributed:
model.module.load_state_dict(checkpoint['model_state'])
else:
model.load_state_dict(checkpoint['model_state'])
optimizer.load_state_dict(checkpoint['optimizer_state'])
start_epoch = checkpoint['epoch'] + 1
best_val_loss = checkpoint.get('val_loss', best_val_loss)
print(f"Resumed training from epoch {start_epoch}")
# Training loop
for epoch in range(start_epoch, args.epochs):
args.epoch = epoch # Useful for the sampler in distributed training
if args.distributed:
train_loader.sampler.set_epoch(epoch)
if args.local_rank == 0 or not args.distributed:
print(f"Epoch {epoch+1}/{args.epochs}")
train_loss = train_epoch(
model, train_loader, optimizer, criterion, scaler, scheduler, device, args
)
val_loss = validate(model, val_loader, criterion, device)
if args.local_rank == 0 or not args.distributed:
print(f"Train Loss: {train_loss:.4f} | Val Loss: {val_loss:.4f}")
# Checkpointing
if val_loss < best_val_loss:
best_val_loss = val_loss
patience_counter = 0
torch.save({
'epoch': epoch,
'model_state': model.module.state_dict() if args.distributed else model.state_dict(),
'optimizer_state': optimizer.state_dict(),
'scheduler_state': scheduler.state_dict(),
'val_loss': val_loss,
'tokenizer': tokenizer,
}, os.path.join(args.checkpoint_dir, 'best_model.pth'))
else:
patience_counter += 1
if patience_counter >= args.early_stopping_patience:
print("Early stopping triggered")
break
# Inference on test set
if args.local_rank == 0 or not args.distributed:
print("\nGenerating captions on test set images:")
model.eval()
for idx, (image, filename) in enumerate(test_loader):
image = image.to(device).squeeze(0)
caption = generate_caption(model, image, tokenizer, device)
print(f"{filename}: {caption}")
if idx >= 4:
break
if args.distributed:
cleanup_distributed()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Data arguments
parser.add_argument('--train_image_dir', type=str, required=True)
parser.add_argument('--train_ann_file', type=str, required=True)
parser.add_argument('--val_image_dir', type=str, required=True)
parser.add_argument('--val_ann_file', type=str, required=True)
parser.add_argument('--test_image_dir', type=str, required=True) # Test set images only
# Model arguments
parser.add_argument('--model_name', type=str, default='efficientnet_b3')
parser.add_argument('--embed_dim', type=int, default=DEFAULT_EMBED_DIM)
parser.add_argument('--num_layers', type=int, default=DEFAULT_NUM_LAYERS)
parser.add_argument('--num_heads', type=int, default=DEFAULT_NUM_HEADS)
# Training arguments
parser.add_argument('--batch_size', type=int, default=96)
parser.add_argument('--lr', type=float, default=3e-4)
parser.add_argument('--epochs', type=int, default=10)
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--use_amp', action='store_true')
parser.add_argument('--grad_accum', type=int, default=1)
parser.add_argument('--checkpoint_dir', type=str, default='/workspace')
parser.add_argument('--early_stopping_patience', type=int, default=3)
# Distributed training arguments
# Accept both --local_rank and --local-rank
parser.add_argument('--local_rank', '--local-rank', type=int, default=0,
help="Local rank. Necessary for using distributed training.")
parser.add_argument('--distributed', action='store_true', help="Use distributed training")
# Resume training argument
parser.add_argument('--resume_checkpoint', type=str, default=None, help="Path to checkpoint to resume training from.")
args = parser.parse_args()
# Override local_rank from environment variable if set
if "LOCAL_RANK" in os.environ:
args.local_rank = int(os.environ["LOCAL_RANK"])
# Create checkpoint directory
os.makedirs(args.checkpoint_dir, exist_ok=True)
main(args)