AMontiB
Your original commit message (now includes LFS pointer)
9c4b1c4
'''
Copyright 2024 Image Processing Research Group of University Federico
II of Naples ('GRIP-UNINA'). All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
import open_clip
from .resnet_mod import ChannelLinear
dict_pretrain = {
'clipL14openai' : ('ViT-L-14', 'openai'),
'clipL14laion400m' : ('ViT-L-14', 'laion400m_e32'),
'clipL14laion2B' : ('ViT-L-14', 'laion2b_s32b_b82k'),
'clipL14datacomp' : ('ViT-L-14', 'laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K', 'open_clip_pytorch_model.bin'),
'clipL14commonpool' : ('ViT-L-14', "laion/CLIP-ViT-L-14-CommonPool.XL-s13B-b90K", 'open_clip_pytorch_model.bin'),
'clipaL14datacomp' : ('ViT-L-14-CLIPA', 'datacomp1b'),
'cocaL14laion2B' : ('coca_ViT-L-14', 'laion2b_s13b_b90k'),
'clipg14laion2B' : ('ViT-g-14', 'laion2b_s34b_b88k'),
'eva2L14merged2b' : ('EVA02-L-14', 'merged2b_s4b_b131k'),
'clipB16laion2B' : ('ViT-B-16', 'laion2b_s34b_b88k'),
}
class OpenClipLinear(nn.Module):
def __init__(self, num_classes=1, pretrain='clipL14commonpool', normalize=True, next_to_last=False):
super(OpenClipLinear, self).__init__()
# Modified to handle download failures gracefully
# The checkpoint only contains fc weights, so we need the pretrained backbone
if len(dict_pretrain[pretrain])==2:
try:
backbone = open_clip.create_model(dict_pretrain[pretrain][0], pretrained=dict_pretrain[pretrain][1])
except Exception as e:
print(f"WARNING: Could not download pretrained weights ({e}). Using random initialization.")
backbone = open_clip.create_model(dict_pretrain[pretrain][0], pretrained=None)
else:
try:
from huggingface_hub import hf_hub_download
backbone = open_clip.create_model(dict_pretrain[pretrain][0], pretrained=hf_hub_download(*dict_pretrain[pretrain][1:]))
except Exception as e:
print(f"WARNING: Could not download pretrained weights ({e}). Using random initialization.")
backbone = open_clip.create_model(dict_pretrain[pretrain][0], pretrained=None)
if next_to_last:
self.num_features = backbone.visual.proj.shape[0]
backbone.visual.proj = None
else:
self.num_features = backbone.visual.output_dim
self.bb = [backbone, ]
self.normalize = normalize
self.fc = ChannelLinear(self.num_features, num_classes)
torch.nn.init.normal_(self.fc.weight.data, 0.0, 0.02)
def to(self, *args, **kwargs):
self.bb[0].to(*args, **kwargs)
super(OpenClipLinear, self).to(*args, **kwargs)
return self
def forward_features(self, x):
with torch.no_grad():
self.bb[0].eval()
features = self.bb[0].encode_image(x, normalize=self.normalize)
return features
def forward_head(self, x):
return self.fc(x)
def forward(self, x):
return self.forward_head(self.forward_features(x))