Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from torchvision import transforms | |
from PIL import Image | |
import numpy as np | |
from scipy.spatial.distance import cosine | |
# Constants | |
RECOGNITION_THRESHOLD = 0.8 | |
# Load the model | |
model_path = 'final_modelnew.pth' | |
model = torch.load(model_path, map_location=torch.device('cpu')) | |
model.eval() # Set the model to evaluation mode | |
# Database to store embeddings and user IDs | |
user_embeddings = {} | |
# Preprocess the image | |
def preprocess_image(image): | |
transform = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
]) | |
image = Image.fromarray(image.astype('uint8'), 'RGB') | |
image = transform(image).unsqueeze(0) | |
return image | |
# Generate embedding | |
def generate_embedding(image): | |
preprocessed_image = preprocess_image(image) | |
with torch.no_grad(): # No need to track gradients | |
embedding = model(preprocessed_image) | |
return embedding.numpy()[0] | |
# Register new user | |
def register_user(image, user_id): | |
try: | |
embedding = generate_embedding(image) | |
user_embeddings[user_id] = embedding | |
return f"User {user_id} registered successfully." | |
except Exception as e: | |
return f"Error during registration: {str(e)}" | |
# Recognize user | |
def recognize_user(image): | |
try: | |
new_embedding = generate_embedding(image) | |
min_distance = float('inf') | |
recognized_user_id = "Unknown" | |
for user_id, embedding in user_embeddings.items(): | |
distance = cosine(new_embedding, embedding) | |
if distance < min_distance: | |
min_distance = distance | |
recognized_user_id = user_id | |
if min_distance > RECOGNITION_THRESHOLD: | |
return "User not recognized." | |
else: | |
return f"Recognized User: {recognized_user_id}" | |
except Exception as e: | |
return f"Error during recognition: {str(e)}" | |
def main(): | |
with gr.Blocks() as demo: | |
gr.Markdown("Facial Recognition System") | |
with gr.Tab("Register"): | |
with gr.Row(): | |
img_register = gr.Image() | |
user_id = gr.Textbox(label="User ID") | |
register_button = gr.Button("Register") | |
register_output = gr.Textbox() | |
register_button.click(register_user, inputs=[img_register, user_id], outputs=register_output) | |
with gr.Tab("Recognize"): | |
with gr.Row(): | |
img_recognize = gr.Image() | |
recognize_button = gr.Button("Recognize") | |
recognize_output = gr.Textbox() | |
recognize_button.click(recognize_user, inputs=[img_recognize], outputs=recognize_output) | |
demo.launch(share=True) | |
if __name__ == "__main__": | |
main() | |