Spaces:
Running
Running
app19
Browse files
app.py
CHANGED
@@ -24,14 +24,15 @@ from langchain.prompts.prompt import PromptTemplate
|
|
24 |
from langchain.prompts.chat import ChatPromptTemplate, SystemMessagePromptTemplate
|
25 |
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate, MessagesPlaceholder
|
26 |
from langchain.document_loaders import PyPDFDirectoryLoader
|
27 |
-
|
|
|
28 |
from langchain_community.llms import HuggingFaceHub
|
29 |
|
30 |
from pydantic import BaseModel
|
31 |
import shutil
|
32 |
|
33 |
# Cell 1: Image Classification Model
|
34 |
-
image_pipeline = pipeline(task="image-classification", model="
|
35 |
|
36 |
def predict_image(input_img):
|
37 |
predictions = image_pipeline(input_img)
|
@@ -69,26 +70,32 @@ vectordb = Chroma.from_documents(
|
|
69 |
)
|
70 |
# define retriever
|
71 |
retriever = vectordb.as_retriever(search_kwargs={"k": 1}, search_type="mmr")
|
72 |
-
prompt_template = """
|
73 |
-
Your name is AngryGreta and you are a recycling chatbot with the objective to anwer questions from user in English or Spanish /
|
74 |
-
Use the following pieces of context to answer the question if the question is related with recycling /
|
75 |
-
Answer in the same language of the question /
|
76 |
-
Always say "thanks for asking!" at the end of the answer /
|
77 |
-
If the context is not relevant, please answer the question by using your own knowledge about the topic.
|
78 |
-
|
79 |
-
context: {context}
|
80 |
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
"""
|
83 |
|
84 |
# Create the chat prompt templates
|
85 |
-
|
86 |
qa_prompt = ChatPromptTemplate(
|
87 |
-
|
88 |
-
|
89 |
-
MessagesPlaceholder(variable_name="chat_history"),
|
90 |
-
|
91 |
-
|
92 |
)
|
93 |
llm = HuggingFaceHub(
|
94 |
repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
@@ -101,23 +108,37 @@ llm = HuggingFaceHub(
|
|
101 |
},
|
102 |
)
|
103 |
|
104 |
-
memory = ConversationBufferMemory(llm=llm, memory_key="chat_history", input_key='
|
105 |
|
106 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
107 |
llm = llm,
|
|
|
108 |
memory = memory,
|
109 |
retriever = retriever,
|
110 |
verbose = True,
|
111 |
combine_docs_chain_kwargs={'prompt': qa_prompt},
|
112 |
get_chat_history = lambda h : h,
|
113 |
-
rephrase_question =
|
114 |
-
output_key = '
|
115 |
)
|
116 |
|
117 |
-
def chat_interface(question
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
-
|
120 |
-
|
|
|
|
|
121 |
|
122 |
chatbot_gradio_app = gr.ChatInterface(
|
123 |
fn=chat_interface,
|
|
|
24 |
from langchain.prompts.chat import ChatPromptTemplate, SystemMessagePromptTemplate
|
25 |
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate, MessagesPlaceholder
|
26 |
from langchain.document_loaders import PyPDFDirectoryLoader
|
27 |
+
from pydantic import BaseModel, Field
|
28 |
+
from langchain.output_parsers import PydanticOutputParser
|
29 |
from langchain_community.llms import HuggingFaceHub
|
30 |
|
31 |
from pydantic import BaseModel
|
32 |
import shutil
|
33 |
|
34 |
# Cell 1: Image Classification Model
|
35 |
+
image_pipeline = pipeline(task="image-classification", model="microsoft/resnet-50")
|
36 |
|
37 |
def predict_image(input_img):
|
38 |
predictions = image_pipeline(input_img)
|
|
|
70 |
)
|
71 |
# define retriever
|
72 |
retriever = vectordb.as_retriever(search_kwargs={"k": 1}, search_type="mmr")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
class FinalAnswer(BaseModel):
|
75 |
+
question: str = Field(description="the original question")
|
76 |
+
answer: str = Field(description="the extracted answer")
|
77 |
+
|
78 |
+
# Assuming you have a parser for the FinalAnswer class
|
79 |
+
parser = PydanticOutputParser(pydantic_object=FinalAnswer)
|
80 |
+
|
81 |
+
template = """
|
82 |
+
Your name is AngryGreta and you are a recycling chatbot with the objective to anwer querys from user in English or Spanish /
|
83 |
+
Use the following pieces of context to answer the question /
|
84 |
+
Answer in the same language of the question /
|
85 |
+
Context: {context}
|
86 |
+
Chat history: {chat_history}
|
87 |
+
User: {query}
|
88 |
+
{format_instructions}
|
89 |
"""
|
90 |
|
91 |
# Create the chat prompt templates
|
92 |
+
sys_prompt = SystemMessagePromptTemplate.from_template(template)
|
93 |
qa_prompt = ChatPromptTemplate(
|
94 |
+
messages=[
|
95 |
+
sys_prompt,
|
96 |
+
MessagesPlaceholder(variable_name="chat_history"),
|
97 |
+
HumanMessagePromptTemplate.from_template("{question}")],
|
98 |
+
partial_variables={"format_instructions": parser.get_format_instructions()}
|
99 |
)
|
100 |
llm = HuggingFaceHub(
|
101 |
repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
|
|
108 |
},
|
109 |
)
|
110 |
|
111 |
+
memory = ConversationBufferMemory(llm=llm, memory_key="chat_history", input_key='query', output_key='output', return_messages=True)
|
112 |
|
113 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
114 |
llm = llm,
|
115 |
+
condense_question_prompt = qa_prompt,
|
116 |
memory = memory,
|
117 |
retriever = retriever,
|
118 |
verbose = True,
|
119 |
combine_docs_chain_kwargs={'prompt': qa_prompt},
|
120 |
get_chat_history = lambda h : h,
|
121 |
+
rephrase_question = True,
|
122 |
+
output_key = 'output',
|
123 |
)
|
124 |
|
125 |
+
def chat_interface(question):
|
126 |
+
result = qa_chain.invoke({'query': question, 'context': retriever})
|
127 |
+
output_string = result['output']
|
128 |
+
|
129 |
+
# Find the index of the last occurrence of "answer": in the string
|
130 |
+
answer_index = output_string.rfind('"answer":')
|
131 |
+
|
132 |
+
# Extract the substring starting from the "answer": index
|
133 |
+
answer_part = output_string[answer_index + len('"answer":'):].strip()
|
134 |
+
|
135 |
+
# Find the next occurrence of a double quote to get the start of the answer value
|
136 |
+
quote_index = answer_part.find('"')
|
137 |
|
138 |
+
# Extract the answer value between double quotes
|
139 |
+
answer_value = answer_part[quote_index + 1:answer_part.find('"', quote_index + 1)]
|
140 |
+
|
141 |
+
return answer_value
|
142 |
|
143 |
chatbot_gradio_app = gr.ChatInterface(
|
144 |
fn=chat_interface,
|