shuklaji9810's picture
first commit
5e014de
import gradio as gr
from PIL import Image
import numpy as np
import os
from face_cropper import detect_and_label_faces
# Define a custom function to convert an image to grayscale
def to_grayscale(input_image):
grayscale_image = Image.fromarray(np.array(input_image).mean(axis=-1).astype(np.uint8))
return grayscale_image
description_markdown = """
# Fake Face Detection tool from TrustWorthy BiometraVision Lab IISER Bhopal
## Usage
This tool expects a face image as input. Upon submission, it will process the image and provide an output with bounding boxes drawn on the face. Alongside the visual markers, the tool will give a detection result indicating whether the face is fake or real.
## Disclaimer
Please note that this tool is for research purposes only and may not always be 100% accurate. Users are advised to exercise discretion and supervise the tool's usage accordingly.
## Licensing and Permissions
This tool has been developed solely for research and demonstrative purposes. Any commercial utilization of this tool is strictly prohibited unless explicit permission has been obtained from the developers.
## Developer Contact
For further inquiries or permissions, you can reach out to the developer through the following social media accounts:
- [LAB Webpage](https://sites.google.com/iiitd.ac.in/agarwalakshay/labiiserb?authuser=0)
- [LinkedIn](https://www.linkedin.com/in/shivam-shukla-0a50ab1a2/)
- [GitHub](https://github.com/SaShukla090)
"""
# Create the Gradio app
app = gr.Interface(
fn=detect_and_label_faces,
inputs=gr.Image(type="pil"),
outputs="image",
# examples=[
# "path_to_example_image_1.jpg",
# "path_to_example_image_2.jpg"
# ]
examples=[
os.path.join("Examples", image_name) for image_name in os.listdir("Examples")
],
title="Fake Face Detection",
description=description_markdown,
)
# Run the app
app.launch()
# import torch.nn.functional as F
# import torch
# import torch.nn as nn
# import torch.optim as optim
# from torch.utils.data import DataLoader
# from sklearn.metrics import accuracy_score, precision_recall_fscore_support
# from torch.optim.lr_scheduler import CosineAnnealingLR
# from tqdm import tqdm
# import warnings
# warnings.filterwarnings("ignore")
# from utils.config import cfg
# from dataset.real_n_fake_dataloader import Extracted_Frames_Dataset
# from utils.data_transforms import get_transforms_train, get_transforms_val
# from net.Multimodalmodel import Image_n_DCT
# import gradio as gr
# import os
# import json
# import torch
# from torchvision import transforms
# from torch.utils.data import DataLoader, Dataset
# from PIL import Image
# import numpy as np
# import pandas as pd
# import cv2
# import argparse
# from sklearn.metrics import classification_report, confusion_matrix
# import matplotlib.pyplot as plt
# import seaborn as sns
# class Test_Dataset(Dataset):
# def __init__(self, test_data_path = None, transform = None, image = None):
# """
# Args:
# returns:
# """
# if test_data_path is None and image is not None:
# self.dataset = [(image, 2)]
# self.transform = transform
# def __len__(self):
# return len(self.dataset)
# def __getitem__(self, idx):
# sample_input = self.get_sample_input(idx)
# return sample_input
# def get_sample_input(self, idx):
# rgb_image = self.get_rgb_image(self.dataset[idx][0])
# dct_image = self.compute_dct_color(self.dataset[idx][0])
# # label = self.get_label(idx)
# sample_input = {"rgb_image": rgb_image, "dct_image": dct_image}
# return sample_input
# def get_rgb_image(self, rgb_image):
# # rgb_image_path = self.dataset[idx][0]
# # rgb_image = Image.open(rgb_image_path)
# if self.transform:
# rgb_image = self.transform(rgb_image)
# return rgb_image
# def get_dct_image(self, idx):
# rgb_image_path = self.dataset[idx][0]
# rgb_image = cv2.imread(rgb_image_path)
# dct_image = self.compute_dct_color(rgb_image)
# if self.transform:
# dct_image = self.transform(dct_image)
# return dct_image
# def get_label(self, idx):
# return self.dataset[idx][1]
# def compute_dct_color(self, image):
# image_float = np.float32(image)
# dct_image = np.zeros_like(image_float)
# for i in range(3):
# dct_image[:, :, i] = cv2.dct(image_float[:, :, i])
# if self.transform:
# dct_image = self.transform(dct_image)
# return dct_image
# device = torch.device("cpu")
# # print(device)
# model = Image_n_DCT()
# model.load_state_dict(torch.load('weights/best_model.pth', map_location = device))
# model.to(device)
# model.eval()
# def classify(image):
# test_dataset = Test_Dataset(transform = get_transforms_val(), image = image)
# inputs = test_dataset[0]
# rgb_image, dct_image = inputs['rgb_image'].to(device), inputs['dct_image'].to(device)
# output = model(rgb_image.unsqueeze(0), dct_image.unsqueeze(0))
# # _, predicted = torch.max(output.data, 1)
# # print(f"the face is {'real' if predicted==1 else 'fake'}")
# return {'Fake': output[0][0], 'Real': output[0][1]}
# iface = gr.Interface(fn=classify, inputs="image", outputs="label")
# if __name__ == "__main__":
# iface.launch()