Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from utils.config import cfg | |
from utils.basicblocks import BasicBlock | |
from utils.feature_fusion_block import DCT_Attention_Fusion_Conv | |
from utils.classifier import ClassifierModel | |
class Image_n_DCT(nn.Module): | |
def __init__(self,): | |
super(Image_n_DCT, self).__init__() | |
self.Img_Block = nn.ModuleList() | |
self.DCT_Block = nn.ModuleList() | |
self.RGB_n_DCT_Fusion = nn.ModuleList() | |
self.num_classes = len(cfg.CLASSES) | |
for i in range(len(cfg.MULTIMODAL_FUSION.IMG_CHANNELS) - 1): | |
self.Img_Block.append(BasicBlock(cfg.MULTIMODAL_FUSION.IMG_CHANNELS[i], cfg.MULTIMODAL_FUSION.IMG_CHANNELS[i+1], stride=1)) | |
self.DCT_Block.append(BasicBlock(cfg.MULTIMODAL_FUSION.DCT_CHANNELS[i], cfg.MULTIMODAL_FUSION.IMG_CHANNELS[i+1], stride=1)) | |
self.RGB_n_DCT_Fusion.append(DCT_Attention_Fusion_Conv(cfg.MULTIMODAL_FUSION.IMG_CHANNELS[i+1])) | |
self.classifier = ClassifierModel(self.num_classes) | |
def forward(self, rgb_image, dct_image): | |
image = [rgb_image] | |
dct_image = [dct_image] | |
for i in range(len(self.Img_Block)): | |
image.append(self.Img_Block[i](image[-1])) | |
dct_image.append(self.DCT_Block[i](dct_image[-1])) | |
image[-1] = self.RGB_n_DCT_Fusion[i](image[-1], dct_image[-1]) | |
dct_image[-1] = image[-1] | |
out = self.classifier(image[-1]) | |
return out | |