Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import zipfile
|
| 3 |
+
import tempfile
|
| 4 |
+
import shutil
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import json
|
| 8 |
+
import os
|
| 9 |
+
import traceback
|
| 10 |
+
import gc
|
| 11 |
+
|
| 12 |
+
# Import your modules
|
| 13 |
+
from engine import compute_mapss_measures
|
| 14 |
+
from models import get_model_config, cleanup_all_models
|
| 15 |
+
from config import DEFAULT_ALPHA
|
| 16 |
+
from utils import clear_gpu_memory
|
| 17 |
+
|
| 18 |
+
def process_audio_files(zip_file, model_name, layer, alpha):
|
| 19 |
+
"""
|
| 20 |
+
Process uploaded ZIP file containing audio mixtures.
|
| 21 |
+
|
| 22 |
+
Expected ZIP structure:
|
| 23 |
+
- references/: Contains N reference audio files
|
| 24 |
+
- outputs/: Contains N output audio files
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
if zip_file is None:
|
| 28 |
+
return None, "Please upload a ZIP file"
|
| 29 |
+
|
| 30 |
+
# Create temporary directory for processing
|
| 31 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
| 32 |
+
temp_path = Path(temp_dir)
|
| 33 |
+
|
| 34 |
+
try:
|
| 35 |
+
# Extract ZIP file
|
| 36 |
+
extract_path = temp_path / "extracted"
|
| 37 |
+
extract_path.mkdir(exist_ok=True)
|
| 38 |
+
|
| 39 |
+
with zipfile.ZipFile(zip_file.name, 'r') as zip_ref:
|
| 40 |
+
zip_ref.extractall(extract_path)
|
| 41 |
+
|
| 42 |
+
# Find references and outputs directories
|
| 43 |
+
refs_dir = None
|
| 44 |
+
outs_dir = None
|
| 45 |
+
|
| 46 |
+
# Check for standard structure
|
| 47 |
+
for item in extract_path.iterdir():
|
| 48 |
+
if item.is_dir():
|
| 49 |
+
if item.name.lower() in ['references', 'refs', 'reference']:
|
| 50 |
+
refs_dir = item
|
| 51 |
+
elif item.name.lower() in ['outputs', 'outs', 'output', 'separated']:
|
| 52 |
+
outs_dir = item
|
| 53 |
+
|
| 54 |
+
# If not found at root, check one level deeper
|
| 55 |
+
if refs_dir is None or outs_dir is None:
|
| 56 |
+
for item in extract_path.iterdir():
|
| 57 |
+
if item.is_dir():
|
| 58 |
+
for subitem in item.iterdir():
|
| 59 |
+
if subitem.is_dir():
|
| 60 |
+
if subitem.name.lower() in ['references', 'refs', 'reference']:
|
| 61 |
+
refs_dir = subitem
|
| 62 |
+
elif subitem.name.lower() in ['outputs', 'outs', 'output', 'separated']:
|
| 63 |
+
outs_dir = subitem
|
| 64 |
+
|
| 65 |
+
if refs_dir is None or outs_dir is None:
|
| 66 |
+
return None, "Could not find 'references' and 'outputs' directories in the ZIP file"
|
| 67 |
+
|
| 68 |
+
# Get audio files
|
| 69 |
+
ref_files = sorted([f for f in refs_dir.glob("*.wav")])
|
| 70 |
+
out_files = sorted([f for f in outs_dir.glob("*.wav")])
|
| 71 |
+
|
| 72 |
+
if len(ref_files) == 0:
|
| 73 |
+
return None, "No reference WAV files found"
|
| 74 |
+
if len(out_files) == 0:
|
| 75 |
+
return None, "No output WAV files found"
|
| 76 |
+
|
| 77 |
+
# Create manifest
|
| 78 |
+
manifest = [{
|
| 79 |
+
"mixture_id": "uploaded_mixture",
|
| 80 |
+
"references": [str(f) for f in ref_files],
|
| 81 |
+
"systems": {
|
| 82 |
+
"uploaded_system": [str(f) for f in out_files]
|
| 83 |
+
}
|
| 84 |
+
}]
|
| 85 |
+
|
| 86 |
+
# Validate model and layer
|
| 87 |
+
allowed_models = set(get_model_config(0).keys())
|
| 88 |
+
if model_name not in allowed_models:
|
| 89 |
+
return None, f"Invalid model. Allowed: {', '.join(sorted(allowed_models))}"
|
| 90 |
+
|
| 91 |
+
# Set default layer if needed
|
| 92 |
+
if model_name == "raw":
|
| 93 |
+
layer_final = 0
|
| 94 |
+
else:
|
| 95 |
+
model_defaults = {
|
| 96 |
+
"wavlm": 24, "wav2vec2": 24, "hubert": 24,
|
| 97 |
+
"wavlm_base": 12, "wav2vec2_base": 12, "hubert_base": 12,
|
| 98 |
+
"wav2vec2_xlsr": 24, "ast": 12
|
| 99 |
+
}
|
| 100 |
+
layer_final = layer if layer is not None else model_defaults.get(model_name, 12)
|
| 101 |
+
|
| 102 |
+
# Run experiment with compute_mapss_measures
|
| 103 |
+
results_dir = compute_mapss_measures(
|
| 104 |
+
models=[model_name],
|
| 105 |
+
mixtures=manifest,
|
| 106 |
+
layer=layer_final,
|
| 107 |
+
alpha=alpha,
|
| 108 |
+
verbose=True,
|
| 109 |
+
max_gpus=1, # Limit to 1 GPU for HF Space
|
| 110 |
+
add_ci=False # Disable CI for faster processing
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
# Create output ZIP with results
|
| 114 |
+
output_zip = temp_path / "results.zip"
|
| 115 |
+
|
| 116 |
+
with zipfile.ZipFile(output_zip, 'w') as zipf:
|
| 117 |
+
# Add all CSV files from results
|
| 118 |
+
results_path = Path(results_dir)
|
| 119 |
+
for csv_file in results_path.rglob("*.csv"):
|
| 120 |
+
arcname = str(csv_file.relative_to(results_path.parent))
|
| 121 |
+
zipf.write(csv_file, arcname)
|
| 122 |
+
|
| 123 |
+
# Add params.json
|
| 124 |
+
params_file = results_path / "params.json"
|
| 125 |
+
if params_file.exists():
|
| 126 |
+
zipf.write(params_file, str(params_file.relative_to(results_path.parent)))
|
| 127 |
+
|
| 128 |
+
# Add manifest
|
| 129 |
+
manifest_file = results_path / "manifest_canonical.json"
|
| 130 |
+
if manifest_file.exists():
|
| 131 |
+
zipf.write(manifest_file, str(manifest_file.relative_to(results_path.parent)))
|
| 132 |
+
|
| 133 |
+
# Read the ZIP file to return
|
| 134 |
+
with open(output_zip, 'rb') as f:
|
| 135 |
+
output_data = f.read()
|
| 136 |
+
|
| 137 |
+
# Create a proper file object for Gradio
|
| 138 |
+
output_file_path = temp_path / "download_results.zip"
|
| 139 |
+
with open(output_file_path, 'wb') as f:
|
| 140 |
+
f.write(output_data)
|
| 141 |
+
|
| 142 |
+
return str(output_file_path), "Processing completed successfully!"
|
| 143 |
+
|
| 144 |
+
except Exception as e:
|
| 145 |
+
error_msg = f"Error processing files: {str(e)}\n{traceback.format_exc()}"
|
| 146 |
+
return None, error_msg
|
| 147 |
+
finally:
|
| 148 |
+
# Ensure cleanup happens
|
| 149 |
+
cleanup_all_models()
|
| 150 |
+
clear_gpu_memory()
|
| 151 |
+
gc.collect()
|
| 152 |
+
|
| 153 |
+
# Create Gradio interface
|
| 154 |
+
def create_interface():
|
| 155 |
+
with gr.Blocks(title="MAPSS - Multi-source Audio Perceptual Separation Scores") as demo:
|
| 156 |
+
gr.Markdown("""
|
| 157 |
+
# MAPSS: Multi-source Audio Perceptual Separation Scores
|
| 158 |
+
|
| 159 |
+
This tool evaluates audio source separation quality using Perceptual Similarity (PS) and Perceptual Matching (PM) metrics.
|
| 160 |
+
|
| 161 |
+
## How to use:
|
| 162 |
+
1. **Prepare your audio files**: Create a ZIP file with the following structure:
|
| 163 |
+
```
|
| 164 |
+
your_mixture.zip
|
| 165 |
+
βββ references/ # Original clean sources
|
| 166 |
+
β βββ speaker1.wav
|
| 167 |
+
β βββ speaker2.wav
|
| 168 |
+
β βββ ...
|
| 169 |
+
βββ outputs/ # Separated outputs from your algorithm
|
| 170 |
+
βββ separated1.wav
|
| 171 |
+
βββ separated2.wav
|
| 172 |
+
βββ ...
|
| 173 |
+
```
|
| 174 |
+
2. **Upload the ZIP file** using the file uploader below
|
| 175 |
+
3. **Select model and parameters**
|
| 176 |
+
4. **Click "Process"** to run the evaluation
|
| 177 |
+
5. **Download the results** as a ZIP file containing CSV files with PS/PM scores
|
| 178 |
+
|
| 179 |
+
## Models available:
|
| 180 |
+
- **raw**: Raw waveform features (no model)
|
| 181 |
+
- **wavlm**: WavLM Large model (best overall performance)
|
| 182 |
+
- **wav2vec2**: Wav2Vec2 Large model
|
| 183 |
+
- **hubert**: HuBERT Large model
|
| 184 |
+
- **wavlm_base**: WavLM Base model (faster, good performance)
|
| 185 |
+
- **wav2vec2_base**: Wav2Vec2 Base model
|
| 186 |
+
- **hubert_base**: HuBERT Base model
|
| 187 |
+
- **wav2vec2_xlsr**: Wav2Vec2 XLSR-53 model (multilingual)
|
| 188 |
+
- **ast**: Audio Spectrogram Transformer
|
| 189 |
+
""")
|
| 190 |
+
|
| 191 |
+
with gr.Row():
|
| 192 |
+
with gr.Column():
|
| 193 |
+
file_input = gr.File(
|
| 194 |
+
label="Upload ZIP file with audio mixtures",
|
| 195 |
+
file_types=[".zip"],
|
| 196 |
+
type="filepath"
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
model_dropdown = gr.Dropdown(
|
| 200 |
+
choices=["raw", "wavlm", "wav2vec2", "hubert",
|
| 201 |
+
"wavlm_base", "wav2vec2_base", "hubert_base",
|
| 202 |
+
"wav2vec2_xlsr", "ast"],
|
| 203 |
+
value="wav2vec2_base",
|
| 204 |
+
label="Select embedding model"
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
layer_slider = gr.Slider(
|
| 208 |
+
minimum=0,
|
| 209 |
+
maximum=24,
|
| 210 |
+
step=1,
|
| 211 |
+
value=12,
|
| 212 |
+
label="Layer (leave at default for automatic selection)"
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
alpha_slider = gr.Slider(
|
| 216 |
+
minimum=0.0,
|
| 217 |
+
maximum=1.0,
|
| 218 |
+
step=0.1,
|
| 219 |
+
value=DEFAULT_ALPHA,
|
| 220 |
+
label="Diffusion maps alpha parameter"
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
process_btn = gr.Button("Process Audio Files", variant="primary")
|
| 224 |
+
|
| 225 |
+
with gr.Column():
|
| 226 |
+
output_file = gr.File(
|
| 227 |
+
label="Download Results (ZIP)",
|
| 228 |
+
type="filepath"
|
| 229 |
+
)
|
| 230 |
+
status_text = gr.Textbox(
|
| 231 |
+
label="Status",
|
| 232 |
+
lines=3,
|
| 233 |
+
max_lines=10
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
gr.Markdown("""
|
| 237 |
+
## Output format:
|
| 238 |
+
The results ZIP will contain:
|
| 239 |
+
- `ps_scores_{model}.csv`: Perceptual Similarity scores for each speaker/source
|
| 240 |
+
- `pm_scores_{model}.csv`: Perceptual Matching scores for each speaker/source
|
| 241 |
+
- `params.json`: Experiment parameters
|
| 242 |
+
- `manifest_canonical.json`: Processed file manifest
|
| 243 |
+
|
| 244 |
+
## Score interpretation:
|
| 245 |
+
- **PS (Perceptual Similarity)**: 0-1 score, higher is better. Measures how well the separated output matches the reference compared to other sources.
|
| 246 |
+
- **PM (Perceptual Matching)**: 0-1 score, higher is better. Measures robustness to audio distortions.
|
| 247 |
+
|
| 248 |
+
## Notes:
|
| 249 |
+
- Processing may take several minutes depending on the audio length and model
|
| 250 |
+
- Audio files are automatically resampled to 16kHz
|
| 251 |
+
- The tool automatically matches outputs to references based on correlation
|
| 252 |
+
- For best results, ensure equal number of reference and output files
|
| 253 |
+
|
| 254 |
+
## Citation:
|
| 255 |
+
If you use this tool in your research, please cite our paper (details coming soon).
|
| 256 |
+
""")
|
| 257 |
+
|
| 258 |
+
# Set up the processing
|
| 259 |
+
process_btn.click(
|
| 260 |
+
fn=process_audio_files,
|
| 261 |
+
inputs=[file_input, model_dropdown, layer_slider, alpha_slider],
|
| 262 |
+
outputs=[output_file, status_text]
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
# Add examples if you want
|
| 266 |
+
gr.Examples(
|
| 267 |
+
examples=[
|
| 268 |
+
# You can add example ZIP files here if you have them
|
| 269 |
+
],
|
| 270 |
+
inputs=[file_input]
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
return demo
|
| 274 |
+
|
| 275 |
+
# Create and launch the app
|
| 276 |
+
if __name__ == "__main__":
|
| 277 |
+
demo = create_interface()
|
| 278 |
+
demo.launch()
|