Spaces:
Sleeping
Sleeping
# Inference on unseen images for YOLOv8 parts segmentation | |
from ultralytics import YOLO | |
import os | |
from glob import glob | |
def run_inference(): # Get absolute paths | |
base_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) | |
model_path = os.path.join(base_dir, 'models', 'parts', 'weights', 'weights', 'best.pt') | |
img_dir = os.path.join(base_dir, 'damage_detection_dataset', 'img') | |
train_dir = os.path.join(base_dir, 'data', 'data_yolo_for_training', 'car_parts_damage_dataset', 'images', 'train') | |
out_dir = os.path.join(base_dir, 'inference_results', 'parts') | |
# Validate paths | |
if not os.path.exists(model_path): | |
print(f"Error: Model weights not found at {model_path}") | |
return | |
if not os.path.exists(img_dir): | |
print(f"Error: Image directory not found at {img_dir}") | |
return | |
if not os.path.exists(train_dir): | |
print(f"Warning: Training directory not found at {train_dir}") | |
print("Will run inference on all images instead of just unseen ones") | |
train_imgs = set() | |
else: | |
# Get all images used for training | |
train_imgs = set(os.listdir(train_dir)) | |
# Create output directory | |
os.makedirs(out_dir, exist_ok=True) | |
# Get all images in original dataset | |
all_imgs = set(os.listdir(img_dir)) | |
# Select images not used in training | |
unseen_imgs = sorted(list(all_imgs - train_imgs)) | |
if not unseen_imgs: | |
print(f"No images found for inference in {img_dir}") | |
return | |
try: | |
# Load model | |
model = YOLO(model_path) | |
# Class names for visualization | |
class_names = ['headlamp', 'front_bumper', 'hood', 'door', 'rear_bumper'] | |
# Run inference on each unseen image | |
for img_name in unseen_imgs: | |
try: | |
img_path = os.path.join(img_dir, img_name) | |
results = model.predict( | |
source=img_path, | |
save=True, | |
project=out_dir, | |
name='', | |
imgsz=640, | |
conf=0.25, | |
classes=list(range(len(class_names))) # All classes | |
) | |
print(f'Processed: {img_name}') | |
except Exception as e: | |
print(f"Error processing {img_name}: {str(e)}") | |
continue | |
print(f'Inference complete. Results saved to {out_dir}') | |
except Exception as e: | |
print(f"Error loading model: {str(e)}") | |
return | |
if __name__ == '__main__': | |
run_inference() | |