Spaces:
Runtime error
Runtime error
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/13b_metrics.ipynb. | |
# %% ../nbs/13b_metrics.ipynb 1 | |
from __future__ import annotations | |
from .data.all import * | |
from .optimizer import * | |
from .learner import * | |
# %% auto 0 | |
__all__ = ['rmse', 'exp_rmspe', 'perplexity', 'AccumMetric', 'skm_to_fastai', 'optim_metric', 'accuracy', 'error_rate', | |
'top_k_accuracy', 'APScoreBinary', 'BalancedAccuracy', 'BrierScore', 'CohenKappa', 'F1Score', 'FBeta', | |
'HammingLoss', 'Jaccard', 'Precision', 'Recall', 'RocAuc', 'RocAucBinary', 'MatthewsCorrCoef', | |
'accuracy_multi', 'APScoreMulti', 'BrierScoreMulti', 'F1ScoreMulti', 'FBetaMulti', 'HammingLossMulti', | |
'JaccardMulti', 'MatthewsCorrCoefMulti', 'PrecisionMulti', 'RecallMulti', 'RocAucMulti', 'mse', 'mae', | |
'msle', 'ExplainedVariance', 'R2Score', 'PearsonCorrCoef', 'SpearmanCorrCoef', 'foreground_acc', 'Dice', | |
'DiceMulti', 'JaccardCoeff', 'CorpusBLEUMetric', 'Perplexity', 'LossMetric', 'LossMetrics'] | |
# %% ../nbs/13b_metrics.ipynb 7 | |
import sklearn.metrics as skm | |
import scipy.stats as scs | |
# %% ../nbs/13b_metrics.ipynb 8 | |
mk_class('ActivationType', **{o:o.lower() for o in ['No', 'Sigmoid', 'Softmax', 'BinarySoftmax']}, | |
doc="All possible activation classes for `AccumMetric") | |
# %% ../nbs/13b_metrics.ipynb 9 | |
class AccumMetric(Metric): | |
"Stores predictions and targets on CPU in accumulate to perform final calculations with `func`." | |
def __init__(self, func, dim_argmax=None, activation=ActivationType.No, thresh=None, to_np=False, | |
invert_arg=False, flatten=True, name=None, **kwargs): | |
store_attr('func,dim_argmax,activation,thresh,flatten') | |
self._name = ifnone(name, self.func.func.__name__ if hasattr(self.func, 'func') else self.func.__name__) | |
self.to_np,self.invert_args,self.kwargs = to_np,invert_arg,kwargs | |
def reset(self): | |
"Clear all targs and preds" | |
self.targs,self.preds = [],[] | |
def accumulate(self, learn): | |
"Store targs and preds from `learn`, using activation function and argmax as appropriate" | |
pred = learn.pred | |
if self.activation in [ActivationType.Softmax, ActivationType.BinarySoftmax]: | |
pred = F.softmax(pred, dim=self.dim_argmax) | |
if self.activation == ActivationType.BinarySoftmax: pred = pred[:, -1] | |
elif self.activation == ActivationType.Sigmoid: pred = torch.sigmoid(pred) | |
elif self.dim_argmax: pred = pred.argmax(dim=self.dim_argmax) | |
if self.thresh: pred = (pred >= self.thresh) | |
self.accum_values(pred,learn.y,learn) | |
def accum_values(self, preds, targs,learn=None): | |
"Store targs and preds" | |
to_d = learn.to_detach if learn is not None else to_detach | |
preds,targs = to_d(preds),to_d(targs) | |
if self.flatten: preds,targs = flatten_check(preds,targs) | |
self.preds.append(preds) | |
self.targs.append(targs) | |
def __call__(self, preds, targs): | |
"Calculate metric on one batch of data" | |
self.reset() | |
self.accum_values(preds,targs) | |
return self.value | |
def value(self): | |
"Value of the metric using accumulated preds and targs" | |
if len(self.preds) == 0: return | |
preds,targs = torch.cat(self.preds),torch.cat(self.targs) | |
if self.to_np: preds,targs = preds.numpy(),targs.numpy() | |
return self.func(targs, preds, **self.kwargs) if self.invert_args else self.func(preds, targs, **self.kwargs) | |
def name(self): return self._name | |
def name(self, value): self._name = value | |
# %% ../nbs/13b_metrics.ipynb 15 | |
def skm_to_fastai(func, is_class=True, thresh=None, axis=-1, activation=None, **kwargs): | |
"Convert `func` from sklearn.metrics to a fastai metric" | |
dim_argmax = axis if is_class and thresh is None else None | |
if activation is None: | |
activation = ActivationType.Sigmoid if (is_class and thresh is not None) else ActivationType.No | |
return AccumMetric(func, dim_argmax=dim_argmax, activation=activation, thresh=thresh, | |
to_np=True, invert_arg=True, **kwargs) | |
# %% ../nbs/13b_metrics.ipynb 21 | |
def optim_metric(f, argname, bounds, tol=0.01, do_neg=True, get_x=False): | |
"Replace metric `f` with a version that optimizes argument `argname`" | |
def _f(preds, targs): | |
def minfunc(x): | |
kwargs = {argname:x} | |
res = f(preds, targs, **kwargs) | |
return -res if do_neg else res | |
optres = scipy.optimize.minimize_scalar(minfunc, bounds=bounds, method='bounded', | |
options={'xatol':0.01}) | |
fun = -optres.fun if do_neg else optres.fun | |
return (fun,optres.x) if get_x else fun | |
_f.__name__ = f'opt_{f.__name__}' | |
return _f | |
# %% ../nbs/13b_metrics.ipynb 25 | |
def accuracy(inp, targ, axis=-1): | |
"Compute accuracy with `targ` when `pred` is bs * n_classes" | |
pred,targ = flatten_check(inp.argmax(dim=axis), targ) | |
return (pred == targ).float().mean() | |
# %% ../nbs/13b_metrics.ipynb 28 | |
def error_rate(inp, targ, axis=-1): | |
"1 - `accuracy`" | |
return 1 - accuracy(inp, targ, axis=axis) | |
# %% ../nbs/13b_metrics.ipynb 30 | |
def top_k_accuracy(inp, targ, k=5, axis=-1): | |
"Computes the Top-k accuracy (`targ` is in the top `k` predictions of `inp`)" | |
inp = inp.topk(k=k, dim=axis)[1] | |
targ = targ.unsqueeze(dim=axis).expand_as(inp) | |
return (inp == targ).sum(dim=-1).float().mean() | |
# %% ../nbs/13b_metrics.ipynb 32 | |
def APScoreBinary(axis=-1, average='macro', pos_label=1, sample_weight=None): | |
"Average Precision for single-label binary classification problems" | |
return skm_to_fastai(skm.average_precision_score, axis=axis, activation=ActivationType.BinarySoftmax, | |
average=average, pos_label=pos_label, sample_weight=sample_weight) | |
# %% ../nbs/13b_metrics.ipynb 34 | |
def BalancedAccuracy(axis=-1, sample_weight=None, adjusted=False): | |
"Balanced Accuracy for single-label binary classification problems" | |
return skm_to_fastai(skm.balanced_accuracy_score, axis=axis, | |
sample_weight=sample_weight, adjusted=adjusted) | |
# %% ../nbs/13b_metrics.ipynb 36 | |
def BrierScore(axis=-1, sample_weight=None, pos_label=None): | |
"Brier score for single-label classification problems" | |
return skm_to_fastai(skm.brier_score_loss, axis=axis, | |
sample_weight=sample_weight, pos_label=pos_label) | |
# %% ../nbs/13b_metrics.ipynb 38 | |
def CohenKappa(axis=-1, labels=None, weights=None, sample_weight=None): | |
"Cohen kappa for single-label classification problems" | |
return skm_to_fastai(skm.cohen_kappa_score, axis=axis, labels=labels, weights=weights, | |
sample_weight=sample_weight) | |
# %% ../nbs/13b_metrics.ipynb 40 | |
def F1Score(axis=-1, labels=None, pos_label=1, average='binary', sample_weight=None): | |
"F1 score for single-label classification problems" | |
return skm_to_fastai(skm.f1_score, axis=axis, | |
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight) | |
# %% ../nbs/13b_metrics.ipynb 42 | |
def FBeta(beta, axis=-1, labels=None, pos_label=1, average='binary', sample_weight=None): | |
"FBeta score with `beta` for single-label classification problems" | |
return skm_to_fastai(skm.fbeta_score, axis=axis, | |
beta=beta, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight) | |
# %% ../nbs/13b_metrics.ipynb 44 | |
def HammingLoss(axis=-1, sample_weight=None): | |
"Hamming loss for single-label classification problems" | |
return skm_to_fastai(skm.hamming_loss, axis=axis, | |
sample_weight=sample_weight) | |
# %% ../nbs/13b_metrics.ipynb 46 | |
def Jaccard(axis=-1, labels=None, pos_label=1, average='binary', sample_weight=None): | |
"Jaccard score for single-label classification problems" | |
return skm_to_fastai(skm.jaccard_score, axis=axis, | |
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight) | |
# %% ../nbs/13b_metrics.ipynb 48 | |
def Precision(axis=-1, labels=None, pos_label=1, average='binary', sample_weight=None): | |
"Precision for single-label classification problems" | |
return skm_to_fastai(skm.precision_score, axis=axis, | |
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight) | |
# %% ../nbs/13b_metrics.ipynb 50 | |
def Recall(axis=-1, labels=None, pos_label=1, average='binary', sample_weight=None): | |
"Recall for single-label classification problems" | |
return skm_to_fastai(skm.recall_score, axis=axis, | |
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight) | |
# %% ../nbs/13b_metrics.ipynb 52 | |
def RocAuc(axis=-1, average='macro', sample_weight=None, max_fpr=None, multi_class='ovr'): | |
"Area Under the Receiver Operating Characteristic Curve for single-label multiclass classification problems" | |
assert multi_class in ['ovr', 'ovo'] | |
return skm_to_fastai(skm.roc_auc_score, axis=axis, activation=ActivationType.Softmax, flatten=False, | |
average=average, sample_weight=sample_weight, max_fpr=max_fpr, multi_class=multi_class) | |
# %% ../nbs/13b_metrics.ipynb 54 | |
def RocAucBinary(axis=-1, average='macro', sample_weight=None, max_fpr=None, multi_class='raise'): | |
"Area Under the Receiver Operating Characteristic Curve for single-label binary classification problems" | |
return skm_to_fastai(skm.roc_auc_score, axis=axis, activation=ActivationType.BinarySoftmax, | |
average=average, sample_weight=sample_weight, max_fpr=max_fpr, multi_class=multi_class) | |
# %% ../nbs/13b_metrics.ipynb 56 | |
def MatthewsCorrCoef(sample_weight=None, **kwargs): | |
"Matthews correlation coefficient for single-label classification problems" | |
return skm_to_fastai(skm.matthews_corrcoef, sample_weight=sample_weight, **kwargs) | |
# %% ../nbs/13b_metrics.ipynb 59 | |
def accuracy_multi(inp, targ, thresh=0.5, sigmoid=True): | |
"Compute accuracy when `inp` and `targ` are the same size." | |
inp,targ = flatten_check(inp,targ) | |
if sigmoid: inp = inp.sigmoid() | |
return ((inp>thresh)==targ.bool()).float().mean() | |
# %% ../nbs/13b_metrics.ipynb 62 | |
def APScoreMulti(sigmoid=True, average='macro', pos_label=1, sample_weight=None): | |
"Average Precision for multi-label classification problems" | |
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No | |
return skm_to_fastai(skm.average_precision_score, activation=activation, flatten=False, | |
average=average, pos_label=pos_label, sample_weight=sample_weight) | |
# %% ../nbs/13b_metrics.ipynb 64 | |
def BrierScoreMulti(thresh=0.5, sigmoid=True, sample_weight=None, pos_label=None): | |
"Brier score for multi-label classification problems" | |
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No | |
return skm_to_fastai(skm.brier_score_loss, thresh=thresh, activation=activation, flatten=False, | |
sample_weight=sample_weight, pos_label=pos_label) | |
# %% ../nbs/13b_metrics.ipynb 66 | |
def F1ScoreMulti(thresh=0.5, sigmoid=True, labels=None, pos_label=1, average='macro', sample_weight=None): | |
"F1 score for multi-label classification problems" | |
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No | |
return skm_to_fastai(skm.f1_score, thresh=thresh, activation=activation, flatten=False, | |
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight) | |
# %% ../nbs/13b_metrics.ipynb 68 | |
def FBetaMulti(beta, thresh=0.5, sigmoid=True, labels=None, pos_label=1, average='macro', sample_weight=None): | |
"FBeta score with `beta` for multi-label classification problems" | |
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No | |
return skm_to_fastai(skm.fbeta_score, thresh=thresh, activation=activation, flatten=False, | |
beta=beta, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight) | |
# %% ../nbs/13b_metrics.ipynb 70 | |
def HammingLossMulti(thresh=0.5, sigmoid=True, labels=None, sample_weight=None): | |
"Hamming loss for multi-label classification problems" | |
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No | |
return skm_to_fastai(skm.hamming_loss, thresh=thresh, activation=activation, flatten=False, | |
sample_weight=sample_weight) | |
# %% ../nbs/13b_metrics.ipynb 72 | |
def JaccardMulti(thresh=0.5, sigmoid=True, labels=None, pos_label=1, average='macro', sample_weight=None): | |
"Jaccard score for multi-label classification problems" | |
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No | |
return skm_to_fastai(skm.jaccard_score, thresh=thresh, activation=activation, flatten=False, | |
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight) | |
# %% ../nbs/13b_metrics.ipynb 74 | |
def MatthewsCorrCoefMulti(thresh=0.5, sigmoid=True, sample_weight=None): | |
"Matthews correlation coefficient for multi-label classification problems" | |
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No | |
return skm_to_fastai(skm.matthews_corrcoef, thresh=thresh, activation=activation, flatten=False, sample_weight=sample_weight) | |
# %% ../nbs/13b_metrics.ipynb 76 | |
def PrecisionMulti(thresh=0.5, sigmoid=True, labels=None, pos_label=1, average='macro', sample_weight=None): | |
"Precision for multi-label classification problems" | |
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No | |
return skm_to_fastai(skm.precision_score, thresh=thresh, activation=activation, flatten=False, | |
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight) | |
# %% ../nbs/13b_metrics.ipynb 78 | |
def RecallMulti(thresh=0.5, sigmoid=True, labels=None, pos_label=1, average='macro', sample_weight=None): | |
"Recall for multi-label classification problems" | |
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No | |
return skm_to_fastai(skm.recall_score, thresh=thresh, activation=activation, flatten=False, | |
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight) | |
# %% ../nbs/13b_metrics.ipynb 80 | |
def RocAucMulti(sigmoid=True, average='macro', sample_weight=None, max_fpr=None): | |
"Area Under the Receiver Operating Characteristic Curve for multi-label binary classification problems" | |
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No | |
return skm_to_fastai(skm.roc_auc_score, activation=activation, flatten=False, | |
average=average, sample_weight=sample_weight, max_fpr=max_fpr) | |
# %% ../nbs/13b_metrics.ipynb 84 | |
def mse(inp,targ): | |
"Mean squared error between `inp` and `targ`." | |
return F.mse_loss(*flatten_check(inp,targ)) | |
# %% ../nbs/13b_metrics.ipynb 86 | |
def _rmse(inp, targ): return torch.sqrt(F.mse_loss(inp, targ)) | |
rmse = AccumMetric(_rmse) | |
rmse.__doc__ = "Root mean squared error" | |
# %% ../nbs/13b_metrics.ipynb 89 | |
def mae(inp,targ): | |
"Mean absolute error between `inp` and `targ`." | |
inp,targ = flatten_check(inp,targ) | |
return torch.abs(inp - targ).mean() | |
# %% ../nbs/13b_metrics.ipynb 91 | |
def msle(inp, targ): | |
"Mean squared logarithmic error between `inp` and `targ`." | |
inp,targ = flatten_check(inp,targ) | |
return F.mse_loss(torch.log(1 + inp), torch.log(1 + targ)) | |
# %% ../nbs/13b_metrics.ipynb 93 | |
def _exp_rmspe(inp,targ): | |
inp,targ = torch.exp(inp),torch.exp(targ) | |
return torch.sqrt(((targ - inp)/targ).pow(2).mean()) | |
exp_rmspe = AccumMetric(_exp_rmspe) | |
exp_rmspe.__doc__ = "Root mean square percentage error of the exponential of predictions and targets" | |
# %% ../nbs/13b_metrics.ipynb 96 | |
def ExplainedVariance(sample_weight=None): | |
"Explained variance between predictions and targets" | |
return skm_to_fastai(skm.explained_variance_score, is_class=False, sample_weight=sample_weight) | |
# %% ../nbs/13b_metrics.ipynb 98 | |
def R2Score(sample_weight=None): | |
"R2 score between predictions and targets" | |
return skm_to_fastai(skm.r2_score, is_class=False, sample_weight=sample_weight) | |
# %% ../nbs/13b_metrics.ipynb 100 | |
def PearsonCorrCoef(dim_argmax=None, **kwargs): | |
"Pearson correlation coefficient for regression problem" | |
def pearsonr(x,y): return scs.pearsonr(x,y)[0] | |
return AccumMetric(pearsonr, invert_arg=False, dim_argmax=dim_argmax, **kwargs) | |
# %% ../nbs/13b_metrics.ipynb 103 | |
def SpearmanCorrCoef(dim_argmax=None, axis=0, nan_policy='propagate', **kwargs): | |
"Spearman correlation coefficient for regression problem" | |
def spearmanr(a,b=None,**kwargs): return scs.spearmanr(a,b,**kwargs)[0] | |
return AccumMetric(partial(spearmanr, axis=axis, nan_policy=nan_policy), | |
invert_arg=False, dim_argmax=dim_argmax, **kwargs) | |
# %% ../nbs/13b_metrics.ipynb 111 | |
def foreground_acc(inp, targ, bkg_idx=0, axis=1): | |
"Computes non-background accuracy for multiclass segmentation" | |
targ = cast(targ.squeeze(1), TensorBase) | |
mask = targ != bkg_idx | |
return (inp.argmax(dim=axis)[mask]==targ[mask]).float().mean() | |
# %% ../nbs/13b_metrics.ipynb 113 | |
class Dice(Metric): | |
"Dice coefficient metric for binary target in segmentation" | |
def __init__(self, axis=1): self.axis = axis | |
def reset(self): self.inter,self.union = 0,0 | |
def accumulate(self, learn): | |
pred,targ = flatten_check(learn.pred.argmax(dim=self.axis), learn.y) | |
self.inter += (pred*targ).float().sum().item() | |
self.union += (pred+targ).float().sum().item() | |
def value(self): return 2. * self.inter/self.union if self.union > 0 else None | |
# %% ../nbs/13b_metrics.ipynb 115 | |
class DiceMulti(Metric): | |
"Averaged Dice metric (Macro F1) for multiclass target in segmentation" | |
def __init__(self, axis=1): self.axis = axis | |
def reset(self): self.inter,self.union = {},{} | |
def accumulate(self, learn): | |
pred,targ = flatten_check(learn.pred.argmax(dim=self.axis), learn.y) | |
for c in range(learn.pred.shape[self.axis]): | |
p = torch.where(pred == c, 1, 0) | |
t = torch.where(targ == c, 1, 0) | |
c_inter = (p*t).float().sum().item() | |
c_union = (p+t).float().sum().item() | |
if c in self.inter: | |
self.inter[c] += c_inter | |
self.union[c] += c_union | |
else: | |
self.inter[c] = c_inter | |
self.union[c] = c_union | |
def value(self): | |
binary_dice_scores = np.array([]) | |
for c in self.inter: | |
binary_dice_scores = np.append(binary_dice_scores, 2.*self.inter[c]/self.union[c] if self.union[c] > 0 else np.nan) | |
return np.nanmean(binary_dice_scores) | |
# %% ../nbs/13b_metrics.ipynb 118 | |
class JaccardCoeff(Dice): | |
"Implementation of the Jaccard coefficient that is lighter in RAM" | |
def value(self): return self.inter/(self.union-self.inter) if self.union > 0 else None | |
# %% ../nbs/13b_metrics.ipynb 121 | |
class CorpusBLEUMetric(Metric): | |
def __init__(self, vocab_sz=5000, axis=-1): | |
"BLEU Metric calculated over the validation corpus" | |
self.metric_name = 'CorpusBLEU' | |
self.axis, self.vocab_sz = axis, vocab_sz | |
self.pred_len,self.targ_len,self.samp_idx,self.corrects,self.counts, = 0,0,0,[0]*4,[0]*4 | |
def reset(self): | |
self.pred_len,self.targ_len,self.corrects,self.counts = 0,0,[0]*4,[0]*4 | |
class NGram(): | |
def __init__(self, ngram, max_n=5000): self.ngram,self.max_n = ngram,max_n | |
def __eq__(self, other): | |
if len(self.ngram) != len(other.ngram): return False | |
return np.all(np.array(self.ngram) == np.array(other.ngram)) | |
def __hash__(self): return int(sum([o * self.max_n**i for i,o in enumerate(self.ngram)])) | |
def get_grams(self, x, n, max_n=5000): | |
return x if n==1 else [self.NGram(x[i:i+n], max_n=max_n) for i in range(len(x)-n+1)] | |
def get_correct_ngrams(self, pred, targ, n, max_n=5000): | |
pred_grams,targ_grams = self.get_grams(pred, n, max_n=max_n),self.get_grams(targ, n, max_n=max_n) | |
pred_cnt,targ_cnt = Counter(pred_grams),Counter(targ_grams) | |
return sum([min(c, targ_cnt[g]) for g,c in pred_cnt.items()]),len(pred_grams) | |
def accumulate(self, learn): | |
if learn.training: return None | |
else: | |
last_output = learn.pred.argmax(dim=self.axis) | |
last_target = learn.y | |
for pred,targ in zip(last_output.cpu().numpy(),last_target.cpu().numpy()): | |
self.pred_len += len(pred) | |
self.targ_len += len(targ) | |
smooth_mteval = 1 | |
for i in range(4): | |
c,t = self.get_correct_ngrams(pred, targ, i+1, max_n=self.vocab_sz) | |
if c == 0: | |
smooth_mteval *= 2 | |
c = 1 / smooth_mteval # exp smoothing, method 3 from http://acl2014.org/acl2014/W14-33/pdf/W14-3346.pdf | |
self.corrects[i] += c | |
self.counts[i] += t | |
def value(self): | |
if self.counts == 0: return None | |
elif max(self.corrects) == 0: return 0.0 | |
else: | |
precs = [c/t for c,t in zip(self.corrects,self.counts)] | |
len_penalty = math.exp(1 - self.targ_len/self.pred_len) if self.pred_len < self.targ_len else 1 | |
return len_penalty * ((precs[0]*precs[1]*precs[2]*precs[3]) ** 0.25) | |
# %% ../nbs/13b_metrics.ipynb 124 | |
class Perplexity(AvgLoss): | |
"Perplexity (exponential of cross-entropy loss) for Language Models" | |
def value(self): return torch.exp(self.total/self.count) if self.count != 0 else None | |
def name(self): return "perplexity" | |
perplexity = Perplexity() | |
# %% ../nbs/13b_metrics.ipynb 127 | |
class LossMetric(AvgMetric): | |
"Create a metric from `loss_func.attr` named `nm`" | |
def __init__(self, attr, nm=None): store_attr('attr,nm') | |
def accumulate(self, learn): | |
bs = find_bs(learn.yb) | |
self.total += learn.to_detach(getattr(learn.loss_func, self.attr, 0))*bs | |
self.count += bs | |
def name(self): return self.attr if self.nm is None else self.nm | |
# %% ../nbs/13b_metrics.ipynb 128 | |
def LossMetrics(attrs, nms=None): | |
"List of `LossMetric` for each of `attrs` and `nms`" | |
if isinstance(attrs, str): attrs = attrs.split(',') | |
nms = attrs if nms is None else nms.split(',') if isinstance(nms, str) else nms | |
return [LossMetric(a, n) for a,n in zip(attrs,nms)] | |