AItool's picture
Upload 127 files
a983ebc
raw
history blame
22.6 kB
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/13b_metrics.ipynb.
# %% ../nbs/13b_metrics.ipynb 1
from __future__ import annotations
from .data.all import *
from .optimizer import *
from .learner import *
# %% auto 0
__all__ = ['rmse', 'exp_rmspe', 'perplexity', 'AccumMetric', 'skm_to_fastai', 'optim_metric', 'accuracy', 'error_rate',
'top_k_accuracy', 'APScoreBinary', 'BalancedAccuracy', 'BrierScore', 'CohenKappa', 'F1Score', 'FBeta',
'HammingLoss', 'Jaccard', 'Precision', 'Recall', 'RocAuc', 'RocAucBinary', 'MatthewsCorrCoef',
'accuracy_multi', 'APScoreMulti', 'BrierScoreMulti', 'F1ScoreMulti', 'FBetaMulti', 'HammingLossMulti',
'JaccardMulti', 'MatthewsCorrCoefMulti', 'PrecisionMulti', 'RecallMulti', 'RocAucMulti', 'mse', 'mae',
'msle', 'ExplainedVariance', 'R2Score', 'PearsonCorrCoef', 'SpearmanCorrCoef', 'foreground_acc', 'Dice',
'DiceMulti', 'JaccardCoeff', 'CorpusBLEUMetric', 'Perplexity', 'LossMetric', 'LossMetrics']
# %% ../nbs/13b_metrics.ipynb 7
import sklearn.metrics as skm
import scipy.stats as scs
# %% ../nbs/13b_metrics.ipynb 8
mk_class('ActivationType', **{o:o.lower() for o in ['No', 'Sigmoid', 'Softmax', 'BinarySoftmax']},
doc="All possible activation classes for `AccumMetric")
# %% ../nbs/13b_metrics.ipynb 9
class AccumMetric(Metric):
"Stores predictions and targets on CPU in accumulate to perform final calculations with `func`."
def __init__(self, func, dim_argmax=None, activation=ActivationType.No, thresh=None, to_np=False,
invert_arg=False, flatten=True, name=None, **kwargs):
store_attr('func,dim_argmax,activation,thresh,flatten')
self._name = ifnone(name, self.func.func.__name__ if hasattr(self.func, 'func') else self.func.__name__)
self.to_np,self.invert_args,self.kwargs = to_np,invert_arg,kwargs
def reset(self):
"Clear all targs and preds"
self.targs,self.preds = [],[]
def accumulate(self, learn):
"Store targs and preds from `learn`, using activation function and argmax as appropriate"
pred = learn.pred
if self.activation in [ActivationType.Softmax, ActivationType.BinarySoftmax]:
pred = F.softmax(pred, dim=self.dim_argmax)
if self.activation == ActivationType.BinarySoftmax: pred = pred[:, -1]
elif self.activation == ActivationType.Sigmoid: pred = torch.sigmoid(pred)
elif self.dim_argmax: pred = pred.argmax(dim=self.dim_argmax)
if self.thresh: pred = (pred >= self.thresh)
self.accum_values(pred,learn.y,learn)
def accum_values(self, preds, targs,learn=None):
"Store targs and preds"
to_d = learn.to_detach if learn is not None else to_detach
preds,targs = to_d(preds),to_d(targs)
if self.flatten: preds,targs = flatten_check(preds,targs)
self.preds.append(preds)
self.targs.append(targs)
def __call__(self, preds, targs):
"Calculate metric on one batch of data"
self.reset()
self.accum_values(preds,targs)
return self.value
@property
def value(self):
"Value of the metric using accumulated preds and targs"
if len(self.preds) == 0: return
preds,targs = torch.cat(self.preds),torch.cat(self.targs)
if self.to_np: preds,targs = preds.numpy(),targs.numpy()
return self.func(targs, preds, **self.kwargs) if self.invert_args else self.func(preds, targs, **self.kwargs)
@property
def name(self): return self._name
@name.setter
def name(self, value): self._name = value
# %% ../nbs/13b_metrics.ipynb 15
def skm_to_fastai(func, is_class=True, thresh=None, axis=-1, activation=None, **kwargs):
"Convert `func` from sklearn.metrics to a fastai metric"
dim_argmax = axis if is_class and thresh is None else None
if activation is None:
activation = ActivationType.Sigmoid if (is_class and thresh is not None) else ActivationType.No
return AccumMetric(func, dim_argmax=dim_argmax, activation=activation, thresh=thresh,
to_np=True, invert_arg=True, **kwargs)
# %% ../nbs/13b_metrics.ipynb 21
def optim_metric(f, argname, bounds, tol=0.01, do_neg=True, get_x=False):
"Replace metric `f` with a version that optimizes argument `argname`"
def _f(preds, targs):
def minfunc(x):
kwargs = {argname:x}
res = f(preds, targs, **kwargs)
return -res if do_neg else res
optres = scipy.optimize.minimize_scalar(minfunc, bounds=bounds, method='bounded',
options={'xatol':0.01})
fun = -optres.fun if do_neg else optres.fun
return (fun,optres.x) if get_x else fun
_f.__name__ = f'opt_{f.__name__}'
return _f
# %% ../nbs/13b_metrics.ipynb 25
def accuracy(inp, targ, axis=-1):
"Compute accuracy with `targ` when `pred` is bs * n_classes"
pred,targ = flatten_check(inp.argmax(dim=axis), targ)
return (pred == targ).float().mean()
# %% ../nbs/13b_metrics.ipynb 28
def error_rate(inp, targ, axis=-1):
"1 - `accuracy`"
return 1 - accuracy(inp, targ, axis=axis)
# %% ../nbs/13b_metrics.ipynb 30
def top_k_accuracy(inp, targ, k=5, axis=-1):
"Computes the Top-k accuracy (`targ` is in the top `k` predictions of `inp`)"
inp = inp.topk(k=k, dim=axis)[1]
targ = targ.unsqueeze(dim=axis).expand_as(inp)
return (inp == targ).sum(dim=-1).float().mean()
# %% ../nbs/13b_metrics.ipynb 32
def APScoreBinary(axis=-1, average='macro', pos_label=1, sample_weight=None):
"Average Precision for single-label binary classification problems"
return skm_to_fastai(skm.average_precision_score, axis=axis, activation=ActivationType.BinarySoftmax,
average=average, pos_label=pos_label, sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 34
def BalancedAccuracy(axis=-1, sample_weight=None, adjusted=False):
"Balanced Accuracy for single-label binary classification problems"
return skm_to_fastai(skm.balanced_accuracy_score, axis=axis,
sample_weight=sample_weight, adjusted=adjusted)
# %% ../nbs/13b_metrics.ipynb 36
def BrierScore(axis=-1, sample_weight=None, pos_label=None):
"Brier score for single-label classification problems"
return skm_to_fastai(skm.brier_score_loss, axis=axis,
sample_weight=sample_weight, pos_label=pos_label)
# %% ../nbs/13b_metrics.ipynb 38
def CohenKappa(axis=-1, labels=None, weights=None, sample_weight=None):
"Cohen kappa for single-label classification problems"
return skm_to_fastai(skm.cohen_kappa_score, axis=axis, labels=labels, weights=weights,
sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 40
def F1Score(axis=-1, labels=None, pos_label=1, average='binary', sample_weight=None):
"F1 score for single-label classification problems"
return skm_to_fastai(skm.f1_score, axis=axis,
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 42
def FBeta(beta, axis=-1, labels=None, pos_label=1, average='binary', sample_weight=None):
"FBeta score with `beta` for single-label classification problems"
return skm_to_fastai(skm.fbeta_score, axis=axis,
beta=beta, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 44
def HammingLoss(axis=-1, sample_weight=None):
"Hamming loss for single-label classification problems"
return skm_to_fastai(skm.hamming_loss, axis=axis,
sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 46
def Jaccard(axis=-1, labels=None, pos_label=1, average='binary', sample_weight=None):
"Jaccard score for single-label classification problems"
return skm_to_fastai(skm.jaccard_score, axis=axis,
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 48
def Precision(axis=-1, labels=None, pos_label=1, average='binary', sample_weight=None):
"Precision for single-label classification problems"
return skm_to_fastai(skm.precision_score, axis=axis,
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 50
def Recall(axis=-1, labels=None, pos_label=1, average='binary', sample_weight=None):
"Recall for single-label classification problems"
return skm_to_fastai(skm.recall_score, axis=axis,
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 52
def RocAuc(axis=-1, average='macro', sample_weight=None, max_fpr=None, multi_class='ovr'):
"Area Under the Receiver Operating Characteristic Curve for single-label multiclass classification problems"
assert multi_class in ['ovr', 'ovo']
return skm_to_fastai(skm.roc_auc_score, axis=axis, activation=ActivationType.Softmax, flatten=False,
average=average, sample_weight=sample_weight, max_fpr=max_fpr, multi_class=multi_class)
# %% ../nbs/13b_metrics.ipynb 54
def RocAucBinary(axis=-1, average='macro', sample_weight=None, max_fpr=None, multi_class='raise'):
"Area Under the Receiver Operating Characteristic Curve for single-label binary classification problems"
return skm_to_fastai(skm.roc_auc_score, axis=axis, activation=ActivationType.BinarySoftmax,
average=average, sample_weight=sample_weight, max_fpr=max_fpr, multi_class=multi_class)
# %% ../nbs/13b_metrics.ipynb 56
def MatthewsCorrCoef(sample_weight=None, **kwargs):
"Matthews correlation coefficient for single-label classification problems"
return skm_to_fastai(skm.matthews_corrcoef, sample_weight=sample_weight, **kwargs)
# %% ../nbs/13b_metrics.ipynb 59
def accuracy_multi(inp, targ, thresh=0.5, sigmoid=True):
"Compute accuracy when `inp` and `targ` are the same size."
inp,targ = flatten_check(inp,targ)
if sigmoid: inp = inp.sigmoid()
return ((inp>thresh)==targ.bool()).float().mean()
# %% ../nbs/13b_metrics.ipynb 62
def APScoreMulti(sigmoid=True, average='macro', pos_label=1, sample_weight=None):
"Average Precision for multi-label classification problems"
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No
return skm_to_fastai(skm.average_precision_score, activation=activation, flatten=False,
average=average, pos_label=pos_label, sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 64
def BrierScoreMulti(thresh=0.5, sigmoid=True, sample_weight=None, pos_label=None):
"Brier score for multi-label classification problems"
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No
return skm_to_fastai(skm.brier_score_loss, thresh=thresh, activation=activation, flatten=False,
sample_weight=sample_weight, pos_label=pos_label)
# %% ../nbs/13b_metrics.ipynb 66
def F1ScoreMulti(thresh=0.5, sigmoid=True, labels=None, pos_label=1, average='macro', sample_weight=None):
"F1 score for multi-label classification problems"
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No
return skm_to_fastai(skm.f1_score, thresh=thresh, activation=activation, flatten=False,
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 68
def FBetaMulti(beta, thresh=0.5, sigmoid=True, labels=None, pos_label=1, average='macro', sample_weight=None):
"FBeta score with `beta` for multi-label classification problems"
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No
return skm_to_fastai(skm.fbeta_score, thresh=thresh, activation=activation, flatten=False,
beta=beta, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 70
def HammingLossMulti(thresh=0.5, sigmoid=True, labels=None, sample_weight=None):
"Hamming loss for multi-label classification problems"
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No
return skm_to_fastai(skm.hamming_loss, thresh=thresh, activation=activation, flatten=False,
sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 72
def JaccardMulti(thresh=0.5, sigmoid=True, labels=None, pos_label=1, average='macro', sample_weight=None):
"Jaccard score for multi-label classification problems"
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No
return skm_to_fastai(skm.jaccard_score, thresh=thresh, activation=activation, flatten=False,
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 74
def MatthewsCorrCoefMulti(thresh=0.5, sigmoid=True, sample_weight=None):
"Matthews correlation coefficient for multi-label classification problems"
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No
return skm_to_fastai(skm.matthews_corrcoef, thresh=thresh, activation=activation, flatten=False, sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 76
def PrecisionMulti(thresh=0.5, sigmoid=True, labels=None, pos_label=1, average='macro', sample_weight=None):
"Precision for multi-label classification problems"
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No
return skm_to_fastai(skm.precision_score, thresh=thresh, activation=activation, flatten=False,
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 78
def RecallMulti(thresh=0.5, sigmoid=True, labels=None, pos_label=1, average='macro', sample_weight=None):
"Recall for multi-label classification problems"
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No
return skm_to_fastai(skm.recall_score, thresh=thresh, activation=activation, flatten=False,
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 80
def RocAucMulti(sigmoid=True, average='macro', sample_weight=None, max_fpr=None):
"Area Under the Receiver Operating Characteristic Curve for multi-label binary classification problems"
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No
return skm_to_fastai(skm.roc_auc_score, activation=activation, flatten=False,
average=average, sample_weight=sample_weight, max_fpr=max_fpr)
# %% ../nbs/13b_metrics.ipynb 84
def mse(inp,targ):
"Mean squared error between `inp` and `targ`."
return F.mse_loss(*flatten_check(inp,targ))
# %% ../nbs/13b_metrics.ipynb 86
def _rmse(inp, targ): return torch.sqrt(F.mse_loss(inp, targ))
rmse = AccumMetric(_rmse)
rmse.__doc__ = "Root mean squared error"
# %% ../nbs/13b_metrics.ipynb 89
def mae(inp,targ):
"Mean absolute error between `inp` and `targ`."
inp,targ = flatten_check(inp,targ)
return torch.abs(inp - targ).mean()
# %% ../nbs/13b_metrics.ipynb 91
def msle(inp, targ):
"Mean squared logarithmic error between `inp` and `targ`."
inp,targ = flatten_check(inp,targ)
return F.mse_loss(torch.log(1 + inp), torch.log(1 + targ))
# %% ../nbs/13b_metrics.ipynb 93
def _exp_rmspe(inp,targ):
inp,targ = torch.exp(inp),torch.exp(targ)
return torch.sqrt(((targ - inp)/targ).pow(2).mean())
exp_rmspe = AccumMetric(_exp_rmspe)
exp_rmspe.__doc__ = "Root mean square percentage error of the exponential of predictions and targets"
# %% ../nbs/13b_metrics.ipynb 96
def ExplainedVariance(sample_weight=None):
"Explained variance between predictions and targets"
return skm_to_fastai(skm.explained_variance_score, is_class=False, sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 98
def R2Score(sample_weight=None):
"R2 score between predictions and targets"
return skm_to_fastai(skm.r2_score, is_class=False, sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 100
@delegates(AccumMetric)
def PearsonCorrCoef(dim_argmax=None, **kwargs):
"Pearson correlation coefficient for regression problem"
def pearsonr(x,y): return scs.pearsonr(x,y)[0]
return AccumMetric(pearsonr, invert_arg=False, dim_argmax=dim_argmax, **kwargs)
# %% ../nbs/13b_metrics.ipynb 103
@delegates(AccumMetric)
def SpearmanCorrCoef(dim_argmax=None, axis=0, nan_policy='propagate', **kwargs):
"Spearman correlation coefficient for regression problem"
def spearmanr(a,b=None,**kwargs): return scs.spearmanr(a,b,**kwargs)[0]
return AccumMetric(partial(spearmanr, axis=axis, nan_policy=nan_policy),
invert_arg=False, dim_argmax=dim_argmax, **kwargs)
# %% ../nbs/13b_metrics.ipynb 111
def foreground_acc(inp, targ, bkg_idx=0, axis=1):
"Computes non-background accuracy for multiclass segmentation"
targ = cast(targ.squeeze(1), TensorBase)
mask = targ != bkg_idx
return (inp.argmax(dim=axis)[mask]==targ[mask]).float().mean()
# %% ../nbs/13b_metrics.ipynb 113
class Dice(Metric):
"Dice coefficient metric for binary target in segmentation"
def __init__(self, axis=1): self.axis = axis
def reset(self): self.inter,self.union = 0,0
def accumulate(self, learn):
pred,targ = flatten_check(learn.pred.argmax(dim=self.axis), learn.y)
self.inter += (pred*targ).float().sum().item()
self.union += (pred+targ).float().sum().item()
@property
def value(self): return 2. * self.inter/self.union if self.union > 0 else None
# %% ../nbs/13b_metrics.ipynb 115
class DiceMulti(Metric):
"Averaged Dice metric (Macro F1) for multiclass target in segmentation"
def __init__(self, axis=1): self.axis = axis
def reset(self): self.inter,self.union = {},{}
def accumulate(self, learn):
pred,targ = flatten_check(learn.pred.argmax(dim=self.axis), learn.y)
for c in range(learn.pred.shape[self.axis]):
p = torch.where(pred == c, 1, 0)
t = torch.where(targ == c, 1, 0)
c_inter = (p*t).float().sum().item()
c_union = (p+t).float().sum().item()
if c in self.inter:
self.inter[c] += c_inter
self.union[c] += c_union
else:
self.inter[c] = c_inter
self.union[c] = c_union
@property
def value(self):
binary_dice_scores = np.array([])
for c in self.inter:
binary_dice_scores = np.append(binary_dice_scores, 2.*self.inter[c]/self.union[c] if self.union[c] > 0 else np.nan)
return np.nanmean(binary_dice_scores)
# %% ../nbs/13b_metrics.ipynb 118
class JaccardCoeff(Dice):
"Implementation of the Jaccard coefficient that is lighter in RAM"
@property
def value(self): return self.inter/(self.union-self.inter) if self.union > 0 else None
# %% ../nbs/13b_metrics.ipynb 121
class CorpusBLEUMetric(Metric):
def __init__(self, vocab_sz=5000, axis=-1):
"BLEU Metric calculated over the validation corpus"
self.metric_name = 'CorpusBLEU'
self.axis, self.vocab_sz = axis, vocab_sz
self.pred_len,self.targ_len,self.samp_idx,self.corrects,self.counts, = 0,0,0,[0]*4,[0]*4
def reset(self):
self.pred_len,self.targ_len,self.corrects,self.counts = 0,0,[0]*4,[0]*4
class NGram():
def __init__(self, ngram, max_n=5000): self.ngram,self.max_n = ngram,max_n
def __eq__(self, other):
if len(self.ngram) != len(other.ngram): return False
return np.all(np.array(self.ngram) == np.array(other.ngram))
def __hash__(self): return int(sum([o * self.max_n**i for i,o in enumerate(self.ngram)]))
def get_grams(self, x, n, max_n=5000):
return x if n==1 else [self.NGram(x[i:i+n], max_n=max_n) for i in range(len(x)-n+1)]
def get_correct_ngrams(self, pred, targ, n, max_n=5000):
pred_grams,targ_grams = self.get_grams(pred, n, max_n=max_n),self.get_grams(targ, n, max_n=max_n)
pred_cnt,targ_cnt = Counter(pred_grams),Counter(targ_grams)
return sum([min(c, targ_cnt[g]) for g,c in pred_cnt.items()]),len(pred_grams)
def accumulate(self, learn):
if learn.training: return None
else:
last_output = learn.pred.argmax(dim=self.axis)
last_target = learn.y
for pred,targ in zip(last_output.cpu().numpy(),last_target.cpu().numpy()):
self.pred_len += len(pred)
self.targ_len += len(targ)
smooth_mteval = 1
for i in range(4):
c,t = self.get_correct_ngrams(pred, targ, i+1, max_n=self.vocab_sz)
if c == 0:
smooth_mteval *= 2
c = 1 / smooth_mteval # exp smoothing, method 3 from http://acl2014.org/acl2014/W14-33/pdf/W14-3346.pdf
self.corrects[i] += c
self.counts[i] += t
@property
def value(self):
if self.counts == 0: return None
elif max(self.corrects) == 0: return 0.0
else:
precs = [c/t for c,t in zip(self.corrects,self.counts)]
len_penalty = math.exp(1 - self.targ_len/self.pred_len) if self.pred_len < self.targ_len else 1
return len_penalty * ((precs[0]*precs[1]*precs[2]*precs[3]) ** 0.25)
# %% ../nbs/13b_metrics.ipynb 124
class Perplexity(AvgLoss):
"Perplexity (exponential of cross-entropy loss) for Language Models"
@property
def value(self): return torch.exp(self.total/self.count) if self.count != 0 else None
@property
def name(self): return "perplexity"
perplexity = Perplexity()
# %% ../nbs/13b_metrics.ipynb 127
class LossMetric(AvgMetric):
"Create a metric from `loss_func.attr` named `nm`"
def __init__(self, attr, nm=None): store_attr('attr,nm')
def accumulate(self, learn):
bs = find_bs(learn.yb)
self.total += learn.to_detach(getattr(learn.loss_func, self.attr, 0))*bs
self.count += bs
@property
def name(self): return self.attr if self.nm is None else self.nm
# %% ../nbs/13b_metrics.ipynb 128
def LossMetrics(attrs, nms=None):
"List of `LossMetric` for each of `attrs` and `nms`"
if isinstance(attrs, str): attrs = attrs.split(',')
nms = attrs if nms is None else nms.split(',') if isinstance(nms, str) else nms
return [LossMetric(a, n) for a,n in zip(attrs,nms)]