AIlexDev's picture
Update app.py
b7c5cb3
"""Credit to https://github.com/THUDM/ChatGLM2-6B/blob/main/web_demo.py
while mistakes are mine
"""
# pylint: disable=broad-exception-caught, redefined-outer-name, missing-function-docstring, missing-module-docstring, too-many-arguments, line-too-long, invalid-name, redefined-builtin, redefined-argument-from-local
# import gradio as gr
# model_name = "models/THUDM/chatglm2-6b-int4"
# gr.load(model_name).lauch()
# %%writefile demo-4bit.py
import os
import time
from textwrap import dedent
import gradio as gr
import mdtex2html
import torch
from loguru import logger
from transformers import AutoModel, AutoTokenizer
# fix timezone in Linux
os.environ["TZ"] = "Asia/Shanghai"
try:
time.tzset() # type: ignore # pylint: disable=no-member
except Exception:
# Windows
logger.warning("Windows, cant run time.tzset()")
model_name = "THUDM/chatglm2-6b"
# model_name = "THUDM/chatglm2-6b-int4"
RETRY_FLAG = False
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# model = AutoModel.from_pretrained(model_name, trust_remote_code=True).cuda()
# 4/8 bit
# model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).quantize(4).cuda()
has_cuda = torch.cuda.is_available()
# has_cuda = False # force cpu
if has_cuda:
model = (
AutoModel.from_pretrained(model_name, trust_remote_code=True).cuda().half()
) # 3.92G
else:
model = AutoModel.from_pretrained(
model_name, trust_remote_code=True
).half() # .float() .half().float()
model = model.eval()
_ = """Override Chatbot.postprocess"""
def postprocess(self, y):
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
None if message is None else mdtex2html.convert((message)),
None if response is None else mdtex2html.convert(response),
)
return y
gr.Chatbot.postprocess = postprocess
def parse_text(text):
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split("`")
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = "<br></code></pre>"
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", r"\`")
line = line.replace("<", "&lt;")
line = line.replace(">", "&gt;")
line = line.replace(" ", "&nbsp;")
line = line.replace("*", "&ast;")
line = line.replace("_", "&lowbar;")
line = line.replace("-", "&#45;")
line = line.replace(".", "&#46;")
line = line.replace("!", "&#33;")
line = line.replace("(", "&#40;")
line = line.replace(")", "&#41;")
line = line.replace("$", "&#36;")
lines[i] = "<br>" + line
text = "".join(lines)
return text
def predict(
RETRY_FLAG, input, chatbot, max_length, top_p, temperature, history, past_key_values
):
try:
chatbot.append((parse_text(input), ""))
except Exception as exc:
logger.error(exc)
logger.debug(f"{chatbot=}")
_ = """
if chatbot:
chatbot[-1] = (parse_text(input), str(exc))
yield chatbot, history, past_key_values
# """
yield chatbot, history, past_key_values
for response, history, past_key_values in model.stream_chat(
tokenizer,
input,
history,
past_key_values=past_key_values,
return_past_key_values=True,
max_length=max_length,
top_p=top_p,
temperature=temperature,
):
chatbot[-1] = (parse_text(input), parse_text(response))
yield chatbot, history, past_key_values
def trans_api(input, max_length=4096, top_p=0.8, temperature=0.2):
if max_length < 10:
max_length = 4096
if top_p < 0.1 or top_p > 1:
top_p = 0.85
if temperature <= 0 or temperature > 1:
temperature = 0.01
try:
res, _ = model.chat(
tokenizer,
input,
history=[],
past_key_values=None,
max_length=max_length,
top_p=top_p,
temperature=temperature,
)
# logger.debug(f"{res=} \n{_=}")
except Exception as exc:
logger.error(f"{exc=}")
res = str(exc)
return res
def reset_user_input():
return gr.update(value="")
def reset_state():
return [], [], None
# Delete last turn
def delete_last_turn(chat, history):
if chat and history:
chat.pop(-1)
history.pop(-1)
return chat, history
# Regenerate response
def retry_last_answer(
user_input, chatbot, max_length, top_p, temperature, history, past_key_values
):
if chatbot and history:
# Removing the previous conversation from chat
chatbot.pop(-1)
# Setting up a flag to capture a retry
RETRY_FLAG = True
# Getting last message from user
user_input = history[-1][0]
# Removing bot response from the history
history.pop(-1)
yield from predict(
RETRY_FLAG, # type: ignore
user_input,
chatbot,
max_length,
top_p,
temperature,
history,
past_key_values,
)
with gr.Blocks(title="ChatGLM2-6B-int4", theme="TogtherAI/Alex2"(text_size="sm")) as demo:
# gr.HTML("""<h1 align="center">ChatGLM2-6B-int4</h1>""")
gr.HTML(
"""<center><a href="https://huggingface.co/spaces/mikeee/chatglm2-6b-4bit?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>To avoid the queue and for faster inference Duplicate this Space and upgrade to GPU</center>"""
)
with gr.Accordion("🎈 Info", open=False):
_ = """
## ChatGLM2-6B-int4
Try to refresh the browser and try again when occasionally an error occurs.
With a GPU, a query takes from a few seconds to a few tens of seconds, dependent on the number of words/characters
the question and responses contain. The quality of the responses varies quite a bit it seems. Even the same
question with the same parameters, asked at different times, can result in quite different responses.
* Low temperature: responses will be more deterministic and focused; High temperature: responses more creative.
* Suggested temperatures -- translation: up to 0.3; chatting: > 0.4
* Top P controls dynamic vocabulary selection based on context.
For a table of example values for different scenarios, refer to [this](https://community.openai.com/t/cheat-sheet-mastering-temperature-and-top-p-in-chatgpt-api-a-few-tips-and-tricks-on-controlling-the-creativity-deterministic-output-of-prompt-responses/172683)
If the instance is not on a GPU (T4), it will be very slow. You can try to run the colab notebook [chatglm2-6b-4bit colab notebook](https://colab.research.google.com/drive/1WkF7kOjVCcBBatDHjaGkuJHnPdMWNtbW?usp=sharing) for a spin.
The T4 GPU is sponsored by a community GPU grant from Huggingface. Thanks a lot!
"""
gr.Markdown(dedent(_))
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=4):
with gr.Column(scale=12):
user_input = gr.Textbox(
show_label=False,
placeholder="Input...",
).style(container=False)
RETRY_FLAG = gr.Checkbox(value=False, visible=False)
with gr.Column(min_width=32, scale=1):
with gr.Row():
submitBtn = gr.Button("Submit", variant="primary")
deleteBtn = gr.Button("Delete last turn", variant="secondary")
retryBtn = gr.Button("Regenerate", variant="secondary")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_length = gr.Slider(
0,
32768,
value=8192,
step=1.0,
label="Maximum length",
interactive=True,
)
top_p = gr.Slider(
0, 1, value=0.85, step=0.01, label="Top P", interactive=True
)
temperature = gr.Slider(
0.01, 1, value=0.95, step=0.01, label="Temperature", interactive=True
)
history = gr.State([])
past_key_values = gr.State(None)
user_input.submit(
predict,
[
RETRY_FLAG,
user_input,
chatbot,
max_length,
top_p,
temperature,
history,
past_key_values,
],
[chatbot, history, past_key_values],
show_progress="full",
)
submitBtn.click(
predict,
[
RETRY_FLAG,
user_input,
chatbot,
max_length,
top_p,
temperature,
history,
past_key_values,
],
[chatbot, history, past_key_values],
show_progress="full",
api_name="predict",
)
submitBtn.click(reset_user_input, [], [user_input])
emptyBtn.click(
reset_state, outputs=[chatbot, history, past_key_values], show_progress="full"
)
retryBtn.click(
retry_last_answer,
inputs=[
user_input,
chatbot,
max_length,
top_p,
temperature,
history,
past_key_values,
],
# outputs = [chatbot, history, last_user_message, user_message]
outputs=[chatbot, history, past_key_values],
)
deleteBtn.click(delete_last_turn, [chatbot, history], [chatbot, history])
with gr.Accordion("Example inputs", open=True):
etext = """In America, where cars are an important part of the national psyche, a decade ago people had suddenly started to drive less, which had not happened since the oil shocks of the 1970s. """
examples = gr.Examples(
examples = [
["Hallo! Wie geht es dir?"],
["Wie viele Stunden braucht ein Mensch, um einen Hubschrauber zu essen?"],
["Du bist ein hilfreicher und ehrlicher Assistent. Antworte immer so hilfreich wie möglich. Wenn eine Frage keinen Sinn ergibt oder faktisch nicht stimmig ist, erkläre warum, anstatt etwas Falsches zu antworten. Wenn du die Antwort auf eine Frage nicht kennst, teile bitte keine falschen Informationen mit."],
["Ich möchte, dass du als Lehrer für gesprochenes Englisch agierst und mein Englisch verbesserst. Ich werde mit dir auf Englisch sprechen und du antwortest mir auf Englisch, um mein gesprochenes Englisch zu üben. Bitte korrigiere streng meine Grammatikfehler, Tippfehler und faktischen Fehler. Stelle mir in deiner Antwort eine Frage. Jetzt lass uns üben, du könntest mir zuerst eine Frage stellen. Denke daran, meine Grammatikfehler, Tippfehler und faktischen Fehler streng zu korrigieren."],
[f"Ich möchte, dass du dich wie {{Charakter}} aus {{Serie}} verhältst. Ich möchte, dass du antwortest und reagierst wie {{Charakter}}, unter Verwendung des Tons, der Manier und des Vokabulars, das {{Charakter}} verwenden würde. Schreibe keine Erklärungen. Antworte nur wie {{Charakter}}. Du musst das gesamte Wissen von {{Charakter}} kennen."]
]
],
inputs=[user_input],
examples_per_page=30,
)
with gr.Accordion("For Chat/Translation API", open=False, visible=False):
input_text = gr.Text()
tr_btn = gr.Button("Go", variant="primary")
out_text = gr.Text()
tr_btn.click(
trans_api,
[input_text, max_length, top_p, temperature],
out_text,
# show_progress="full",
api_name="tr",
)
_ = """
input_text.submit(
trans_api,
[input_text, max_length, top_p, temperature],
out_text,
show_progress="full",
api_name="tr1",
)
# """
# demo.queue().launch(share=False, inbrowser=True)
# demo.queue().launch(share=True, inbrowser=True, debug=True)
demo.queue().launch(debug=True)