Spaces:
Runtime error
Runtime error
Added streamlit app tp Features section of frontend
Browse files- frontend/src/assets/verified-symbol-icon.png:Zone.Identifier +0 -4
- frontend/src/components/Features.tsx +8 -14
- frontend/src/components/Hero.tsx +3 -17
- frontend/src/components/HowItWorks.tsx +1 -1
- frontend/src/components/Navbar.tsx +1 -1
- frontend/src/components/Statistics.tsx +0 -41
- frontend/src/components/upload/.streamlit/config.toml +0 -6
- frontend/src/components/upload/app-v1.py +0 -46
- frontend/src/components/upload/streamlit_app.py +0 -47
frontend/src/assets/verified-symbol-icon.png:Zone.Identifier
DELETED
@@ -1,4 +0,0 @@
|
|
1 |
-
[ZoneTransfer]
|
2 |
-
ZoneId=3
|
3 |
-
ReferrerUrl=https://uxwing.com/wp-content/themes/uxwing/download/arts-graphic-shapes/verified-symbol-icon.png
|
4 |
-
HostUrl=https://uxwing.com/wp-content/themes/uxwing/download/arts-graphic-shapes/verified-symbol-icon.png
|
|
|
|
|
|
|
|
|
|
frontend/src/components/Features.tsx
CHANGED
@@ -5,18 +5,14 @@ import {
|
|
5 |
CardFooter,
|
6 |
CardHeader,
|
7 |
} from "@/components/ui/card";
|
8 |
-
import image4 from "../assets/looking-ahead.png";
|
9 |
-
//import { UploadDoc } from "./upload/streamlit_app.py";
|
10 |
|
11 |
interface FeatureProps {
|
12 |
title: string;
|
13 |
-
image: string;
|
14 |
}
|
15 |
|
16 |
const features: FeatureProps[] = [
|
17 |
{
|
18 |
title: "UPLOAD DOCUMENT",
|
19 |
-
image: image4,
|
20 |
},
|
21 |
];
|
22 |
|
@@ -31,7 +27,7 @@ export const Features = () => {
|
|
31 |
return (
|
32 |
<section
|
33 |
id="features"
|
34 |
-
className="container py-
|
35 |
>
|
36 |
<h2 className="text-3xl lg:text-4xl font-bold md:text-center">
|
37 |
Get Started{" "}
|
@@ -55,20 +51,18 @@ export const Features = () => {
|
|
55 |
</div>
|
56 |
|
57 |
<div className="grid md:grid-cols-2 lg:grid-cols-1">
|
58 |
-
{features.map(({ title
|
59 |
<Card key={title}>
|
60 |
<CardHeader className="text-3xl lg:text-4xl font-bold md:text-center">
|
61 |
<CardTitle>{title}</CardTitle>
|
62 |
</CardHeader>
|
63 |
<CardFooter>
|
64 |
-
<
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
</CardFooter>
|
73 |
</Card>
|
74 |
))}
|
|
|
5 |
CardFooter,
|
6 |
CardHeader,
|
7 |
} from "@/components/ui/card";
|
|
|
|
|
8 |
|
9 |
interface FeatureProps {
|
10 |
title: string;
|
|
|
11 |
}
|
12 |
|
13 |
const features: FeatureProps[] = [
|
14 |
{
|
15 |
title: "UPLOAD DOCUMENT",
|
|
|
16 |
},
|
17 |
];
|
18 |
|
|
|
27 |
return (
|
28 |
<section
|
29 |
id="features"
|
30 |
+
className="container py-28 sm:py-36 space-y-8"
|
31 |
>
|
32 |
<h2 className="text-3xl lg:text-4xl font-bold md:text-center">
|
33 |
Get Started{" "}
|
|
|
51 |
</div>
|
52 |
|
53 |
<div className="grid md:grid-cols-2 lg:grid-cols-1">
|
54 |
+
{features.map(({ title }: FeatureProps) => (
|
55 |
<Card key={title}>
|
56 |
<CardHeader className="text-3xl lg:text-4xl font-bold md:text-center">
|
57 |
<CardTitle>{title}</CardTitle>
|
58 |
</CardHeader>
|
59 |
<CardFooter>
|
60 |
+
<iframe className="mx-auto"
|
61 |
+
src="https://docverifyrag.streamlit.app/"
|
62 |
+
width="80%"
|
63 |
+
height="400px"
|
64 |
+
style={{ border: 'none' }} // Optional: Removes iframe border
|
65 |
+
/>
|
|
|
|
|
66 |
</CardFooter>
|
67 |
</Card>
|
68 |
))}
|
frontend/src/components/Hero.tsx
CHANGED
@@ -1,10 +1,9 @@
|
|
1 |
-
import { HeroCards } from "./HeroCards";
|
2 |
export const Hero = () => {
|
3 |
return (
|
4 |
-
<section className="container
|
5 |
<div className="text-center lg:text-start space-y-6">
|
6 |
-
<main className="text-
|
7 |
-
<h1 className="
|
8 |
<span className="inline bg-gradient-to-r from-[#F596D3] to-[#D247BF] text-transparent bg-clip-text">
|
9 |
Doc
|
10 |
</span>
|
@@ -13,20 +12,7 @@ export const Hero = () => {
|
|
13 |
RAG
|
14 |
</span></h1>{" "}
|
15 |
</main>
|
16 |
-
|
17 |
-
<p className="text-xl text-muted-foreground md:w-10/12 mx-auto lg:mx-0">
|
18 |
-
Lorem ipsum dolor sit amet consectetur, adipisicing elit. Veritatis dolor pariatur sit!
|
19 |
-
</p>
|
20 |
-
|
21 |
</div>
|
22 |
-
|
23 |
-
{/* Hero cards sections */}
|
24 |
-
<div className="z-10">
|
25 |
-
<HeroCards />
|
26 |
-
</div>
|
27 |
-
|
28 |
-
{/* Shadow effect */}
|
29 |
-
<div className="shadow"></div>
|
30 |
</section>
|
31 |
);
|
32 |
};
|
|
|
|
|
1 |
export const Hero = () => {
|
2 |
return (
|
3 |
+
<section className="container py-30 sm:py-36 space-y-8">
|
4 |
<div className="text-center lg:text-start space-y-6">
|
5 |
+
<main className="text-8xl lg:text-10xl font-bold">
|
6 |
+
<h1 className="md:text-center">
|
7 |
<span className="inline bg-gradient-to-r from-[#F596D3] to-[#D247BF] text-transparent bg-clip-text">
|
8 |
Doc
|
9 |
</span>
|
|
|
12 |
RAG
|
13 |
</span></h1>{" "}
|
14 |
</main>
|
|
|
|
|
|
|
|
|
|
|
15 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
</section>
|
17 |
);
|
18 |
};
|
frontend/src/components/HowItWorks.tsx
CHANGED
@@ -30,7 +30,7 @@ export const HowItWorks = () => {
|
|
30 |
return (
|
31 |
<section
|
32 |
id="howItWorks"
|
33 |
-
className="container text-center py-
|
34 |
>
|
35 |
<h2 className="text-3xl md:text-4xl font-bold ">
|
36 |
Fast and Accurate{" "}
|
|
|
30 |
return (
|
31 |
<section
|
32 |
id="howItWorks"
|
33 |
+
className="container text-center py-22 sm:py-30"
|
34 |
>
|
35 |
<h2 className="text-3xl md:text-4xl font-bold ">
|
36 |
Fast and Accurate{" "}
|
frontend/src/components/Navbar.tsx
CHANGED
@@ -58,7 +58,7 @@ export const Navbar = () => {
|
|
58 |
|
59 |
<img
|
60 |
src={image}
|
61 |
-
alt="
|
62 |
className="w-[18px] lg:w-[28px] mx-2"
|
63 |
/>
|
64 |
))}DocVerifyRAG</a>
|
|
|
58 |
|
59 |
<img
|
60 |
src={image}
|
61 |
+
alt="logo.png"
|
62 |
className="w-[18px] lg:w-[28px] mx-2"
|
63 |
/>
|
64 |
))}DocVerifyRAG</a>
|
frontend/src/components/Statistics.tsx
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
export const Statistics = () => {
|
2 |
-
interface statsProps {
|
3 |
-
quantity: string;
|
4 |
-
description: string;
|
5 |
-
}
|
6 |
-
|
7 |
-
const stats: statsProps[] = [
|
8 |
-
{
|
9 |
-
quantity: "2.7K+",
|
10 |
-
description: "Users",
|
11 |
-
},
|
12 |
-
{
|
13 |
-
quantity: "1.8K+",
|
14 |
-
description: "Subscribers",
|
15 |
-
},
|
16 |
-
{
|
17 |
-
quantity: "112",
|
18 |
-
description: "Downloads",
|
19 |
-
},
|
20 |
-
{
|
21 |
-
quantity: "4",
|
22 |
-
description: "Products",
|
23 |
-
},
|
24 |
-
];
|
25 |
-
|
26 |
-
return (
|
27 |
-
<section id="statistics">
|
28 |
-
<div className="grid grid-cols-2 lg:grid-cols-4 gap-8">
|
29 |
-
{stats.map(({ quantity, description }: statsProps) => (
|
30 |
-
<div
|
31 |
-
key={description}
|
32 |
-
className="space-y-2 text-center"
|
33 |
-
>
|
34 |
-
<h2 className="text-3xl sm:text-4xl font-bold ">{quantity}</h2>
|
35 |
-
<p className="text-xl text-muted-foreground">{description}</p>
|
36 |
-
</div>
|
37 |
-
))}
|
38 |
-
</div>
|
39 |
-
</section>
|
40 |
-
);
|
41 |
-
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
frontend/src/components/upload/.streamlit/config.toml
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
[theme]
|
2 |
-
primaryColor="#F63366"
|
3 |
-
backgroundColor="#FFFFFF"
|
4 |
-
secondaryBackgroundColor="#F0F2F6"
|
5 |
-
textColor="#262730"
|
6 |
-
font="sans serif"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
frontend/src/components/upload/app-v1.py
DELETED
@@ -1,46 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from langchain.llms import OpenAI
|
3 |
-
from langchain.text_splitter import CharacterTextSplitter
|
4 |
-
from langchain.embeddings import OpenAIEmbeddings
|
5 |
-
from langchain.vectorstores import Chroma
|
6 |
-
from langchain.chains import RetrievalQA
|
7 |
-
|
8 |
-
def generate_response(uploaded_file, openai_api_key, query_text):
|
9 |
-
# Load document if file is uploaded
|
10 |
-
if uploaded_file is not None:
|
11 |
-
documents = [uploaded_file.read().decode()]
|
12 |
-
# Split documents into chunks
|
13 |
-
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
14 |
-
texts = text_splitter.create_documents(documents)
|
15 |
-
# Select embeddings
|
16 |
-
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
17 |
-
# Create a vectorstore from documents
|
18 |
-
db = Chroma.from_documents(texts, embeddings)
|
19 |
-
# Create retriever interface
|
20 |
-
retriever = db.as_retriever()
|
21 |
-
# Create QA chain
|
22 |
-
qa = RetrievalQA.from_chain_type(llm=OpenAI(openai_api_key=openai_api_key), chain_type='stuff', retriever=retriever)
|
23 |
-
return qa.run(query_text)
|
24 |
-
|
25 |
-
# Page title
|
26 |
-
st.set_page_config(page_title='π¦π Ask the Doc App')
|
27 |
-
st.title('π¦π Ask the Doc App')
|
28 |
-
|
29 |
-
# File upload
|
30 |
-
uploaded_file = st.file_uploader('Upload an article', type='txt')
|
31 |
-
# Query text
|
32 |
-
query_text = st.text_input('Enter your question:', placeholder = 'Please provide a short summary.', disabled=not uploaded_file)
|
33 |
-
|
34 |
-
# Form input and query
|
35 |
-
result = []
|
36 |
-
with st.form('myform', clear_on_submit=True):
|
37 |
-
openai_api_key = st.text_input('OpenAI API Key', type='password', disabled=not (uploaded_file and query_text))
|
38 |
-
submitted = st.form_submit_button('Submit', disabled=not(uploaded_file and query_text))
|
39 |
-
if submitted and openai_api_key.startswith('sk-'):
|
40 |
-
with st.spinner('Calculating...'):
|
41 |
-
response = generate_response(uploaded_file, openai_api_key, query_text)
|
42 |
-
result.append(response)
|
43 |
-
del openai_api_key
|
44 |
-
|
45 |
-
if len(result):
|
46 |
-
st.info(response)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
frontend/src/components/upload/streamlit_app.py
DELETED
@@ -1,47 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from langchain.llms import OpenAI
|
3 |
-
from langchain.text_splitter import CharacterTextSplitter
|
4 |
-
from langchain.embeddings import OpenAIEmbeddings
|
5 |
-
from langchain.vectorstores import Chroma
|
6 |
-
from langchain.chains import RetrievalQA
|
7 |
-
|
8 |
-
def generate_response(uploaded_file, openai_api_key, query_text):
|
9 |
-
# Load document if file is uploaded
|
10 |
-
if uploaded_file is not None:
|
11 |
-
documents = [uploaded_file.read().decode()]
|
12 |
-
# Split documents into chunks
|
13 |
-
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
14 |
-
texts = text_splitter.create_documents(documents)
|
15 |
-
# Select embeddings
|
16 |
-
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
17 |
-
# Create a vectorstore from documents
|
18 |
-
db = Chroma.from_documents(texts, embeddings)
|
19 |
-
# Create retriever interface
|
20 |
-
retriever = db.as_retriever()
|
21 |
-
# Create QA chain
|
22 |
-
qa = RetrievalQA.from_chain_type(llm=OpenAI(openai_api_key=openai_api_key), chain_type='stuff', retriever=retriever)
|
23 |
-
return qa.run(query_text)
|
24 |
-
|
25 |
-
|
26 |
-
# Page title
|
27 |
-
st.set_page_config(page_title='π¦π Ask the Doc App')
|
28 |
-
st.title('π¦π Ask the Doc App')
|
29 |
-
|
30 |
-
# File upload
|
31 |
-
uploaded_file = st.file_uploader('Upload an article', type='txt')
|
32 |
-
# Query text
|
33 |
-
query_text = st.text_input('Enter your question:', placeholder = 'Please provide a short summary.', disabled=not uploaded_file)
|
34 |
-
|
35 |
-
# Form input and query
|
36 |
-
result = []
|
37 |
-
with st.form('myform', clear_on_submit=True):
|
38 |
-
openai_api_key = st.text_input('OpenAI API Key', type='password', disabled=not (uploaded_file and query_text))
|
39 |
-
submitted = st.form_submit_button('Submit', disabled=not(uploaded_file and query_text))
|
40 |
-
if submitted and openai_api_key.startswith('sk-'):
|
41 |
-
with st.spinner('Calculating...'):
|
42 |
-
response = generate_response(uploaded_file, openai_api_key, query_text)
|
43 |
-
result.append(response)
|
44 |
-
del openai_api_key
|
45 |
-
|
46 |
-
if len(result):
|
47 |
-
st.info(response)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|